25'ten fazla konu seçemezsiniz Konular bir harf veya rakamla başlamalı, kısa çizgiler ('-') içerebilir ve en fazla 35 karakter uzunluğunda olabilir.

cacademo.c 27 KiB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949
  1. /*
  2. * cacademo various demo effects for libcaca
  3. * Copyright (c) 1998 Michele Bini <mibin@tin.it>
  4. * 2003-2006 Jean-Yves Lamoureux <jylam@lnxscene.org>
  5. * 2004-2006 Sam Hocevar <sam@zoy.org>
  6. * All Rights Reserved
  7. *
  8. * $Id$
  9. *
  10. * This program is free software. It comes without any warranty, to
  11. * the extent permitted by applicable law. You can redistribute it
  12. * and/or modify it under the terms of the Do What The Fuck You Want
  13. * To Public License, Version 2, as published by Sam Hocevar. See
  14. * http://sam.zoy.org/wtfpl/COPYING for more details.
  15. */
  16. #include "config.h"
  17. #include "common.h"
  18. #if !defined(__KERNEL__)
  19. # include <stdio.h>
  20. # include <stdlib.h>
  21. # include <string.h>
  22. # include <math.h>
  23. # ifndef M_PI
  24. # define M_PI 3.14159265358979323846
  25. # endif
  26. #endif
  27. #include "cucul.h"
  28. #include "caca.h"
  29. enum action { PREPARE, INIT, UPDATE, RENDER, FREE };
  30. void transition(cucul_canvas_t *, int, int);
  31. void plasma(enum action, cucul_canvas_t *);
  32. void metaballs(enum action, cucul_canvas_t *);
  33. void moire(enum action, cucul_canvas_t *);
  34. void langton(enum action, cucul_canvas_t *);
  35. void matrix(enum action, cucul_canvas_t *);
  36. void rotozoom(enum action, cucul_canvas_t *);
  37. void (*fn[])(enum action, cucul_canvas_t *) =
  38. {
  39. plasma,
  40. metaballs,
  41. moire,
  42. /*langton,*/
  43. matrix,
  44. rotozoom,
  45. };
  46. #define DEMOS (sizeof(fn)/sizeof(*fn))
  47. #define DEMO_FRAMES cucul_rand(500, 1000)
  48. #define TRANSITION_FRAMES 40
  49. #define TRANSITION_COUNT 3
  50. #define TRANSITION_CIRCLE 0
  51. #define TRANSITION_STAR 1
  52. #define TRANSITION_SQUARE 2
  53. /* Common macros for dither-based demos */
  54. #define XSIZ 256
  55. #define YSIZ 256
  56. /* Global variables */
  57. static int frame = 0;
  58. int main(int argc, char **argv)
  59. {
  60. static caca_display_t *dp;
  61. static cucul_canvas_t *frontcv, *backcv, *mask;
  62. int demo, next = -1, pause = 0, next_transition = DEMO_FRAMES;
  63. unsigned int i;
  64. int tmode = cucul_rand(0, TRANSITION_COUNT);
  65. /* Set up two canvases, a mask, and attach a display to the front one */
  66. frontcv = cucul_create_canvas(0, 0);
  67. backcv = cucul_create_canvas(0, 0);
  68. mask = cucul_create_canvas(0, 0);
  69. dp = caca_create_display(frontcv);
  70. if(!dp)
  71. return 1;
  72. cucul_set_canvas_size(backcv, cucul_get_canvas_width(frontcv),
  73. cucul_get_canvas_height(frontcv));
  74. cucul_set_canvas_size(mask, cucul_get_canvas_width(frontcv),
  75. cucul_get_canvas_height(frontcv));
  76. caca_set_display_time(dp, 20000);
  77. /* Initialise all demos' lookup tables */
  78. for(i = 0; i < DEMOS; i++)
  79. fn[i](PREPARE, frontcv);
  80. /* Choose a demo at random */
  81. demo = cucul_rand(0, DEMOS);
  82. fn[demo](INIT, frontcv);
  83. for(;;)
  84. {
  85. /* Handle events */
  86. caca_event_t ev;
  87. while(caca_get_event(dp, CACA_EVENT_KEY_PRESS
  88. | CACA_EVENT_QUIT, &ev, 0))
  89. {
  90. if(ev.type == CACA_EVENT_QUIT)
  91. goto end;
  92. switch(ev.data.key.ch)
  93. {
  94. case CACA_KEY_ESCAPE:
  95. case CACA_KEY_CTRL_C:
  96. case CACA_KEY_CTRL_Z:
  97. goto end;
  98. case ' ':
  99. pause = !pause;
  100. break;
  101. case '\r':
  102. if(next == -1)
  103. next_transition = frame;
  104. break;
  105. }
  106. }
  107. /* Resize the spare canvas, just in case the main one changed */
  108. cucul_set_canvas_size(backcv, cucul_get_canvas_width(frontcv),
  109. cucul_get_canvas_height(frontcv));
  110. cucul_set_canvas_size(mask, cucul_get_canvas_width(frontcv),
  111. cucul_get_canvas_height(frontcv));
  112. if(pause)
  113. goto paused;
  114. /* Update demo's data */
  115. fn[demo](UPDATE, frontcv);
  116. /* Handle transitions */
  117. if(frame == next_transition)
  118. {
  119. next = cucul_rand(0, DEMOS);
  120. if(next == demo)
  121. next = (next + 1) % DEMOS;
  122. fn[next](INIT, backcv);
  123. }
  124. else if(frame == next_transition + TRANSITION_FRAMES)
  125. {
  126. fn[demo](FREE, frontcv);
  127. demo = next;
  128. next = -1;
  129. next_transition = frame + DEMO_FRAMES;
  130. tmode = cucul_rand(0, TRANSITION_COUNT);
  131. }
  132. if(next != -1)
  133. fn[next](UPDATE, backcv);
  134. frame++;
  135. paused:
  136. /* Render main demo's canvas */
  137. fn[demo](RENDER, frontcv);
  138. /* If a transition is on its way, render it */
  139. if(next != -1)
  140. {
  141. fn[next](RENDER, backcv);
  142. cucul_set_color_ansi(mask, CUCUL_LIGHTGRAY, CUCUL_BLACK);
  143. cucul_clear_canvas(mask);
  144. cucul_set_color_ansi(mask, CUCUL_WHITE, CUCUL_WHITE);
  145. transition(mask, tmode,
  146. 100 * (frame - next_transition) / TRANSITION_FRAMES);
  147. cucul_blit(frontcv, 0, 0, backcv, mask);
  148. }
  149. cucul_set_color_ansi(frontcv, CUCUL_WHITE, CUCUL_BLUE);
  150. if(frame < 100)
  151. cucul_put_str(frontcv, cucul_get_canvas_width(frontcv) - 30,
  152. cucul_get_canvas_height(frontcv) - 2,
  153. " -=[ Powered by libcaca ]=- ");
  154. caca_refresh_display(dp);
  155. }
  156. end:
  157. if(next != -1)
  158. fn[next](FREE, frontcv);
  159. fn[demo](FREE, frontcv);
  160. caca_free_display(dp);
  161. cucul_free_canvas(mask);
  162. cucul_free_canvas(backcv);
  163. cucul_free_canvas(frontcv);
  164. return 0;
  165. }
  166. /* Transitions */
  167. void transition(cucul_canvas_t *mask, int tmode, int completed)
  168. {
  169. static float const star[] =
  170. {
  171. 0.000000, -1.000000,
  172. 0.308000, -0.349000,
  173. 0.992000, -0.244000,
  174. 0.500000, 0.266000,
  175. 0.632000, 0.998000,
  176. 0.008000, 0.659000,
  177. -0.601000, 0.995000,
  178. -0.496000, 0.275000,
  179. -0.997000, -0.244000,
  180. -0.313000, -0.349000
  181. };
  182. static float star_rot[sizeof(star)/sizeof(*star)];
  183. static float const square[] =
  184. {
  185. -1, -1,
  186. 1, -1,
  187. 1, 1,
  188. -1, 1
  189. };
  190. static float square_rot[sizeof(square)/sizeof(*square)];
  191. float mulx = 0.0075f * completed * cucul_get_canvas_width(mask);
  192. float muly = 0.0075f * completed * cucul_get_canvas_height(mask);
  193. int w2 = cucul_get_canvas_width(mask) / 2;
  194. int h2 = cucul_get_canvas_height(mask) / 2;
  195. float angle = (0.0075f * completed * 360) * 3.14 / 180, x, y;
  196. unsigned int i;
  197. switch(tmode)
  198. {
  199. case TRANSITION_SQUARE:
  200. /* Compute rotated coordinates */
  201. for(i = 0; i < (sizeof(square) / sizeof(*square)) / 2; i++)
  202. {
  203. x = square[i * 2];
  204. y = square[i * 2 + 1];
  205. square_rot[i * 2] = x * cos(angle) - y * sin(angle);
  206. square_rot[i * 2 + 1] = y * cos(angle) + x * sin(angle);
  207. }
  208. mulx *= 1.8;
  209. muly *= 1.8;
  210. cucul_fill_triangle(mask,
  211. square_rot[0*2] * mulx + w2, square_rot[0*2+1] * muly + h2, \
  212. square_rot[1*2] * mulx + w2, square_rot[1*2+1] * muly + h2, \
  213. square_rot[2*2] * mulx + w2, square_rot[2*2+1] * muly + h2, '#');
  214. cucul_fill_triangle(mask,
  215. square_rot[0*2] * mulx + w2, square_rot[0*2+1] * muly + h2, \
  216. square_rot[2*2] * mulx + w2, square_rot[2*2+1] * muly + h2, \
  217. square_rot[3*2] * mulx + w2, square_rot[3*2+1] * muly + h2, '#');
  218. break;
  219. case TRANSITION_STAR:
  220. /* Compute rotated coordinates */
  221. for(i = 0; i < (sizeof(star) / sizeof(*star)) / 2; i++)
  222. {
  223. x = star[i * 2];
  224. y = star[i * 2 + 1];
  225. star_rot[i * 2] = x * cos(angle) - y * sin(angle);
  226. star_rot[i * 2 + 1] = y * cos(angle) + x * sin(angle);
  227. }
  228. mulx *= 1.8;
  229. muly *= 1.8;
  230. #define DO_TRI(a, b, c) \
  231. cucul_fill_triangle(mask, \
  232. star_rot[(a)*2] * mulx + w2, star_rot[(a)*2+1] * muly + h2, \
  233. star_rot[(b)*2] * mulx + w2, star_rot[(b)*2+1] * muly + h2, \
  234. star_rot[(c)*2] * mulx + w2, star_rot[(c)*2+1] * muly + h2, '#')
  235. DO_TRI(0, 1, 9);
  236. DO_TRI(1, 2, 3);
  237. DO_TRI(3, 4, 5);
  238. DO_TRI(5, 6, 7);
  239. DO_TRI(7, 8, 9);
  240. DO_TRI(9, 1, 5);
  241. DO_TRI(9, 5, 7);
  242. DO_TRI(1, 3, 5);
  243. break;
  244. case TRANSITION_CIRCLE:
  245. cucul_fill_ellipse(mask, w2, h2, mulx, muly, '#');
  246. break;
  247. }
  248. }
  249. /* The plasma effect */
  250. #define TABLEX (XSIZ * 2)
  251. #define TABLEY (YSIZ * 2)
  252. static uint8_t table[TABLEX * TABLEY];
  253. static void do_plasma(uint8_t *,
  254. double, double, double, double, double, double);
  255. void plasma(enum action action, cucul_canvas_t *cv)
  256. {
  257. static cucul_dither_t *dither;
  258. static uint8_t *screen;
  259. static unsigned int red[256], green[256], blue[256], alpha[256];
  260. static double r[3], R[6];
  261. int i, x, y;
  262. switch(action)
  263. {
  264. case PREPARE:
  265. /* Fill various tables */
  266. for(i = 0 ; i < 256; i++)
  267. red[i] = green[i] = blue[i] = alpha[i] = 0;
  268. for(i = 0; i < 3; i++)
  269. r[i] = (double)(cucul_rand(1, 1000)) / 60000 * M_PI;
  270. for(i = 0; i < 6; i++)
  271. R[i] = (double)(cucul_rand(1, 1000)) / 10000;
  272. for(y = 0 ; y < TABLEY ; y++)
  273. for(x = 0 ; x < TABLEX ; x++)
  274. {
  275. double tmp = (((double)((x - (TABLEX / 2)) * (x - (TABLEX / 2))
  276. + (y - (TABLEX / 2)) * (y - (TABLEX / 2))))
  277. * (M_PI / (TABLEX * TABLEX + TABLEY * TABLEY)));
  278. table[x + y * TABLEX] = (1.0 + sin(12.0 * sqrt(tmp))) * 256 / 6;
  279. }
  280. break;
  281. case INIT:
  282. screen = malloc(XSIZ * YSIZ * sizeof(uint8_t));
  283. dither = cucul_create_dither(8, XSIZ, YSIZ, XSIZ, 0, 0, 0, 0);
  284. break;
  285. case UPDATE:
  286. for(i = 0 ; i < 256; i++)
  287. {
  288. double z = ((double)i) / 256 * 6 * M_PI;
  289. red[i] = (1.0 + sin(z + r[1] * frame)) / 2 * 0xfff;
  290. blue[i] = (1.0 + cos(z + r[0] * (frame + 100))) / 2 * 0xfff;
  291. green[i] = (1.0 + cos(z + r[2] * (frame + 200))) / 2 * 0xfff;
  292. }
  293. /* Set the palette */
  294. cucul_set_dither_palette(dither, red, green, blue, alpha);
  295. do_plasma(screen,
  296. (1.0 + sin(((double)frame) * R[0])) / 2,
  297. (1.0 + sin(((double)frame) * R[1])) / 2,
  298. (1.0 + sin(((double)frame) * R[2])) / 2,
  299. (1.0 + sin(((double)frame) * R[3])) / 2,
  300. (1.0 + sin(((double)frame) * R[4])) / 2,
  301. (1.0 + sin(((double)frame) * R[5])) / 2);
  302. break;
  303. case RENDER:
  304. cucul_dither_bitmap(cv, 0, 0,
  305. cucul_get_canvas_width(cv),
  306. cucul_get_canvas_height(cv),
  307. dither, screen);
  308. break;
  309. case FREE:
  310. free(screen);
  311. cucul_free_dither(dither);
  312. break;
  313. }
  314. }
  315. static void do_plasma(uint8_t *pixels, double x_1, double y_1,
  316. double x_2, double y_2, double x_3, double y_3)
  317. {
  318. unsigned int X1 = x_1 * (TABLEX / 2),
  319. Y1 = y_1 * (TABLEY / 2),
  320. X2 = x_2 * (TABLEX / 2),
  321. Y2 = y_2 * (TABLEY / 2),
  322. X3 = x_3 * (TABLEX / 2),
  323. Y3 = y_3 * (TABLEY / 2);
  324. unsigned int y;
  325. uint8_t * t1 = table + X1 + Y1 * TABLEX,
  326. * t2 = table + X2 + Y2 * TABLEX,
  327. * t3 = table + X3 + Y3 * TABLEX;
  328. for(y = 0; y < YSIZ; y++)
  329. {
  330. unsigned int x;
  331. uint8_t * tmp = pixels + y * YSIZ;
  332. unsigned int ty = y * TABLEX, tmax = ty + XSIZ;
  333. for(x = 0; ty < tmax; ty++, tmp++)
  334. tmp[0] = t1[ty] + t2[ty] + t3[ty];
  335. }
  336. }
  337. /* The metaball effect */
  338. #define METASIZE (XSIZ/2)
  339. #define METABALLS 12
  340. #define CROPBALL 200 /* Colour index where to crop balls */
  341. static uint8_t metaball[METASIZE * METASIZE];
  342. static void create_ball(void);
  343. static void draw_ball(uint8_t *, unsigned int, unsigned int);
  344. void metaballs(enum action action, cucul_canvas_t *cv)
  345. {
  346. static cucul_dither_t *cucul_dither;
  347. static uint8_t *screen;
  348. static unsigned int r[256], g[256], b[256], a[256];
  349. static float dd[METABALLS], di[METABALLS], dj[METABALLS], dk[METABALLS];
  350. static unsigned int x[METABALLS], y[METABALLS];
  351. static float i = 10.0, j = 17.0, k = 11.0;
  352. static double offset[360 + 80];
  353. static unsigned int angleoff;
  354. int n, angle;
  355. switch(action)
  356. {
  357. case PREPARE:
  358. /* Make the palette eatable by libcaca */
  359. for(n = 0; n < 256; n++)
  360. r[n] = g[n] = b[n] = a[n] = 0x0;
  361. r[255] = g[255] = b[255] = 0xfff;
  362. /* Generate ball sprite */
  363. create_ball();
  364. for(n = 0; n < METABALLS; n++)
  365. {
  366. dd[n] = cucul_rand(0, 100);
  367. di[n] = (float)cucul_rand(500, 4000) / 6000.0;
  368. dj[n] = (float)cucul_rand(500, 4000) / 6000.0;
  369. dk[n] = (float)cucul_rand(500, 4000) / 6000.0;
  370. }
  371. angleoff = cucul_rand(0, 360);
  372. for(n = 0; n < 360 + 80; n++)
  373. offset[n] = 1.0 + sin((double)(n * M_PI / 60));
  374. break;
  375. case INIT:
  376. screen = malloc(XSIZ * YSIZ * sizeof(uint8_t));
  377. /* Create a libcucul dither smaller than our pixel buffer, so that we
  378. * display only the interesting part of it */
  379. cucul_dither = cucul_create_dither(8, XSIZ - METASIZE, YSIZ - METASIZE,
  380. XSIZ, 0, 0, 0, 0);
  381. break;
  382. case UPDATE:
  383. angle = (frame + angleoff) % 360;
  384. /* Crop the palette */
  385. for(n = CROPBALL; n < 255; n++)
  386. {
  387. int t1, t2, t3;
  388. double c1 = offset[angle];
  389. double c2 = offset[angle + 40];
  390. double c3 = offset[angle + 80];
  391. t1 = n < 0x40 ? 0 : n < 0xc0 ? (n - 0x40) * 0x20 : 0xfff;
  392. t2 = n < 0xe0 ? 0 : (n - 0xe0) * 0x80;
  393. t3 = n < 0x40 ? n * 0x40 : 0xfff;
  394. r[n] = (c1 * t1 + c2 * t2 + c3 * t3) / 4;
  395. g[n] = (c1 * t2 + c2 * t3 + c3 * t1) / 4;
  396. b[n] = (c1 * t3 + c2 * t1 + c3 * t2) / 4;
  397. }
  398. /* Set the palette */
  399. cucul_set_dither_palette(cucul_dither, r, g, b, a);
  400. /* Silly paths for our balls */
  401. for(n = 0; n < METABALLS; n++)
  402. {
  403. float u = di[n] * i + dj[n] * j + dk[n] * sin(di[n] * k);
  404. float v = dd[n] + di[n] * j + dj[n] * k + dk[n] * sin(dk[n] * i);
  405. u = sin(i + u * 2.1) * (1.0 + sin(u));
  406. v = sin(j + v * 1.9) * (1.0 + sin(v));
  407. x[n] = (XSIZ - METASIZE) / 2 + u * (XSIZ - METASIZE) / 4;
  408. y[n] = (YSIZ - METASIZE) / 2 + v * (YSIZ - METASIZE) / 4;
  409. }
  410. i += 0.011;
  411. j += 0.017;
  412. k += 0.019;
  413. memset(screen, 0, XSIZ * YSIZ);
  414. for(n = 0; n < METABALLS; n++)
  415. draw_ball(screen, x[n], y[n]);
  416. break;
  417. case RENDER:
  418. cucul_dither_bitmap(cv, 0, 0,
  419. cucul_get_canvas_width(cv),
  420. cucul_get_canvas_height(cv),
  421. cucul_dither, screen + (METASIZE / 2) * (1 + XSIZ));
  422. break;
  423. case FREE:
  424. free(screen);
  425. cucul_free_dither(cucul_dither);
  426. break;
  427. }
  428. }
  429. static void create_ball(void)
  430. {
  431. int x, y;
  432. float distance;
  433. for(y = 0; y < METASIZE; y++)
  434. for(x = 0; x < METASIZE; x++)
  435. {
  436. distance = ((METASIZE/2) - x) * ((METASIZE/2) - x)
  437. + ((METASIZE/2) - y) * ((METASIZE/2) - y);
  438. distance = sqrt(distance) * 64 / METASIZE;
  439. metaball[x + y * METASIZE] = distance > 15 ? 0 : (255 - distance) * 15;
  440. }
  441. }
  442. static void draw_ball(uint8_t *screen, unsigned int bx, unsigned int by)
  443. {
  444. unsigned int color;
  445. unsigned int i, e = 0;
  446. unsigned int b = (by * XSIZ) + bx;
  447. for(i = 0; i < METASIZE * METASIZE; i++)
  448. {
  449. color = screen[b] + metaball[i];
  450. if(color > 255)
  451. color = 255;
  452. screen[b] = color;
  453. if(e == METASIZE)
  454. {
  455. e = 0;
  456. b += XSIZ - METASIZE;
  457. }
  458. b++;
  459. e++;
  460. }
  461. }
  462. /* The moir effect */
  463. #define DISCSIZ (XSIZ*2)
  464. #define DISCTHICKNESS (XSIZ*15/40)
  465. static uint8_t disc[DISCSIZ * DISCSIZ];
  466. static void put_disc(uint8_t *, int, int);
  467. static void draw_line(int, int, char);
  468. void moire(enum action action, cucul_canvas_t *cv)
  469. {
  470. static cucul_dither_t *dither;
  471. static uint8_t *screen;
  472. static float d[6];
  473. static unsigned int red[256], green[256], blue[256], alpha[256];
  474. int i, x, y;
  475. switch(action)
  476. {
  477. case PREPARE:
  478. /* Fill various tables */
  479. for(i = 0 ; i < 256; i++)
  480. red[i] = green[i] = blue[i] = alpha[i] = 0;
  481. for(i = 0; i < 6; i++)
  482. d[i] = ((float)cucul_rand(50, 70)) / 1000.0;
  483. red[0] = green[0] = blue[0] = 0x777;
  484. red[1] = green[1] = blue[1] = 0xfff;
  485. /* Fill the circle */
  486. for(i = DISCSIZ * 2; i > 0; i -= DISCTHICKNESS)
  487. {
  488. int t, dx, dy;
  489. for(t = 0, dx = 0, dy = i; dx <= dy; dx++)
  490. {
  491. draw_line(dx / 3, dy / 3, (i / DISCTHICKNESS) % 2);
  492. draw_line(dy / 3, dx / 3, (i / DISCTHICKNESS) % 2);
  493. t += t > 0 ? dx - dy-- : dx;
  494. }
  495. }
  496. break;
  497. case INIT:
  498. screen = malloc(XSIZ * YSIZ * sizeof(uint8_t));
  499. dither = cucul_create_dither(8, XSIZ, YSIZ, XSIZ, 0, 0, 0, 0);
  500. break;
  501. case UPDATE:
  502. memset(screen, 0, XSIZ * YSIZ);
  503. /* Set the palette */
  504. red[0] = 0.5 * (1 + sin(d[0] * (frame + 1000))) * 0xfff;
  505. green[0] = 0.5 * (1 + cos(d[1] * frame)) * 0xfff;
  506. blue[0] = 0.5 * (1 + cos(d[2] * (frame + 3000))) * 0xfff;
  507. red[1] = 0.5 * (1 + sin(d[3] * (frame + 2000))) * 0xfff;
  508. green[1] = 0.5 * (1 + cos(d[4] * frame + 5.0)) * 0xfff;
  509. blue[1] = 0.5 * (1 + cos(d[5] * (frame + 4000))) * 0xfff;
  510. cucul_set_dither_palette(dither, red, green, blue, alpha);
  511. /* Draw circles */
  512. x = cos(d[0] * (frame + 1000)) * 128.0 + (XSIZ / 2);
  513. y = sin(0.11 * frame) * 128.0 + (YSIZ / 2);
  514. put_disc(screen, x, y);
  515. x = cos(0.13 * frame + 2.0) * 64.0 + (XSIZ / 2);
  516. y = sin(d[1] * (frame + 2000)) * 64.0 + (YSIZ / 2);
  517. put_disc(screen, x, y);
  518. break;
  519. case RENDER:
  520. cucul_dither_bitmap(cv, 0, 0,
  521. cucul_get_canvas_width(cv),
  522. cucul_get_canvas_height(cv),
  523. dither, screen);
  524. break;
  525. case FREE:
  526. free(screen);
  527. cucul_free_dither(dither);
  528. break;
  529. }
  530. }
  531. static void put_disc(uint8_t *screen, int x, int y)
  532. {
  533. char *src = ((char*)disc) + (DISCSIZ / 2 - x) + (DISCSIZ / 2 - y) * DISCSIZ;
  534. int i, j;
  535. for(j = 0; j < YSIZ; j++)
  536. for(i = 0; i < XSIZ; i++)
  537. {
  538. screen[i + XSIZ * j] ^= src[i + DISCSIZ * j];
  539. }
  540. }
  541. static void draw_line(int x, int y, char color)
  542. {
  543. if(x == 0 || y == 0 || y > DISCSIZ / 2)
  544. return;
  545. if(x > DISCSIZ / 2)
  546. x = DISCSIZ / 2;
  547. memset(disc + (DISCSIZ / 2) - x + DISCSIZ * ((DISCSIZ / 2) - y),
  548. color, 2 * x - 1);
  549. memset(disc + (DISCSIZ / 2) - x + DISCSIZ * ((DISCSIZ / 2) + y - 1),
  550. color, 2 * x - 1);
  551. }
  552. /* Langton ant effect */
  553. #define ANTS 15
  554. #define ITER 2
  555. void langton(enum action action, cucul_canvas_t *cv)
  556. {
  557. static char gradient[] =
  558. {
  559. ' ', ' ', '.', '.', ':', ':', 'x', 'x',
  560. 'X', 'X', '&', '&', 'W', 'W', '@', '@',
  561. };
  562. static int steps[][2] = { { 0, 1 }, { 1, 0 }, { 0, -1 }, { -1, 0 } };
  563. static uint8_t *screen;
  564. static int width, height;
  565. static int ax[ANTS], ay[ANTS], dir[ANTS];
  566. int i, a, x, y;
  567. switch(action)
  568. {
  569. case PREPARE:
  570. width = cucul_get_canvas_width(cv);
  571. height = cucul_get_canvas_height(cv);
  572. for(i = 0; i < ANTS; i++)
  573. {
  574. ax[i] = cucul_rand(0, width);
  575. ay[i] = cucul_rand(0, height);
  576. dir[i] = cucul_rand(0, 4);
  577. }
  578. break;
  579. case INIT:
  580. screen = malloc(width * height);
  581. memset(screen, 0, width * height);
  582. break;
  583. case UPDATE:
  584. for(i = 0; i < ITER; i++)
  585. {
  586. for(x = 0; x < width * height; x++)
  587. {
  588. uint8_t p = screen[x];
  589. if((p & 0x0f) > 1)
  590. screen[x] = p - 1;
  591. }
  592. for(a = 0; a < ANTS; a++)
  593. {
  594. uint8_t p = screen[ax[a] + width * ay[a]];
  595. if(p & 0x0f)
  596. {
  597. dir[a] = (dir[a] + 1) % 4;
  598. screen[ax[a] + width * ay[a]] = a << 4;
  599. }
  600. else
  601. {
  602. dir[a] = (dir[a] + 3) % 4;
  603. screen[ax[a] + width * ay[a]] = (a << 4) | 0x0f;
  604. }
  605. ax[a] = (width + ax[a] + steps[dir[a]][0]) % width;
  606. ay[a] = (height + ay[a] + steps[dir[a]][1]) % height;
  607. }
  608. }
  609. break;
  610. case RENDER:
  611. for(y = 0; y < height; y++)
  612. {
  613. for(x = 0; x < width; x++)
  614. {
  615. uint8_t p = screen[x + width * y];
  616. if(p & 0x0f)
  617. cucul_set_color_ansi(cv, CUCUL_WHITE, p >> 4);
  618. else
  619. cucul_set_color_ansi(cv, CUCUL_BLACK, CUCUL_BLACK);
  620. cucul_put_char(cv, x, y, gradient[p & 0x0f]);
  621. }
  622. }
  623. break;
  624. case FREE:
  625. free(screen);
  626. break;
  627. }
  628. }
  629. /* Matrix effect */
  630. #define MAXDROPS 500
  631. #define MINLEN 15
  632. #define MAXLEN 30
  633. void matrix(enum action action, cucul_canvas_t *cv)
  634. {
  635. static struct drop
  636. {
  637. int x, y, speed, len;
  638. char str[MAXLEN];
  639. }
  640. drop[MAXDROPS];
  641. int w, h, i, j;
  642. switch(action)
  643. {
  644. case PREPARE:
  645. for(i = 0; i < MAXDROPS; i++)
  646. {
  647. drop[i].x = cucul_rand(0, 1000);
  648. drop[i].y = cucul_rand(0, 1000);
  649. drop[i].speed = 5 + cucul_rand(0, 30);
  650. drop[i].len = MINLEN + cucul_rand(0, (MAXLEN - MINLEN));
  651. for(j = 0; j < MAXLEN; j++)
  652. drop[i].str[j] = cucul_rand('0', 'z');
  653. }
  654. break;
  655. case INIT:
  656. break;
  657. case UPDATE:
  658. w = cucul_get_canvas_width(cv);
  659. h = cucul_get_canvas_height(cv);
  660. for(i = 0; i < MAXDROPS && i < (w * h / 32); i++)
  661. {
  662. drop[i].y += drop[i].speed;
  663. if(drop[i].y > 1000)
  664. {
  665. drop[i].y -= 1000;
  666. drop[i].x = cucul_rand(0, 1000);
  667. }
  668. }
  669. break;
  670. case RENDER:
  671. w = cucul_get_canvas_width(cv);
  672. h = cucul_get_canvas_height(cv);
  673. cucul_set_color_ansi(cv, CUCUL_BLACK, CUCUL_BLACK);
  674. cucul_clear_canvas(cv);
  675. for(i = 0; i < MAXDROPS && i < (w * h / 32); i++)
  676. {
  677. int x, y;
  678. x = drop[i].x * w / 1000 / 2 * 2;
  679. y = drop[i].y * (h + MAXLEN) / 1000;
  680. for(j = 0; j < drop[i].len; j++)
  681. {
  682. unsigned int fg;
  683. if(j < 2)
  684. fg = CUCUL_WHITE;
  685. else if(j < drop[i].len / 4)
  686. fg = CUCUL_LIGHTGREEN;
  687. else if(j < drop[i].len * 4 / 5)
  688. fg = CUCUL_GREEN;
  689. else
  690. fg = CUCUL_DARKGRAY;
  691. cucul_set_color_ansi(cv, fg, CUCUL_BLACK);
  692. cucul_put_char(cv, x, y - j,
  693. drop[i].str[(y - j) % drop[i].len]);
  694. }
  695. }
  696. break;
  697. case FREE:
  698. break;
  699. }
  700. }
  701. #define TEXTURE_SIZE 256
  702. #define TABLE_SIZE 65536
  703. /* 24:8 Fixed point stuff */
  704. #define PRECISION 8
  705. #define FMUL(a, b) (((a)*(b))>>PRECISION)
  706. #define TOFIX(d) ((int)( (d)*(double)(1<<PRECISION) ))
  707. #define TOINT(a) (a>>PRECISION);
  708. #include "texture.h"
  709. void rotozoom(enum action action, cucul_canvas_t *canvas)
  710. {
  711. static cucul_dither_t *dither;
  712. static unsigned int *screen, *save;
  713. static int alphaF, tF;
  714. int scaleF;
  715. static int *texture;
  716. static int *cosTable;
  717. static int *sinTable;
  718. static int *yTable;
  719. /* register is quite a bad idea on CISC, but not on RISC */
  720. register unsigned int x, y;
  721. register unsigned int xxF, yyF, uF, vF, uF_, vF_;
  722. register unsigned int vu, vv;
  723. switch(action)
  724. {
  725. case INIT:
  726. screen = (unsigned int*)malloc(4 * XSIZ * YSIZ
  727. * sizeof(unsigned char));
  728. dither = cucul_create_dither(32,
  729. XSIZ, YSIZ,
  730. XSIZ*4,
  731. 0x00FF0000,
  732. 0x0000FF00,
  733. 0x000000FF,
  734. 0x00000000);
  735. save = screen;
  736. texture = (int*) textureByte;
  737. cosTable = malloc(TABLE_SIZE*sizeof(int));
  738. sinTable = malloc(TABLE_SIZE*sizeof(int));
  739. yTable = malloc(TEXTURE_SIZE*sizeof(int));
  740. for(x=0; x<TABLE_SIZE; x++) { /* Cos and Sin tables*/
  741. cosTable[x] = TOFIX(cos(x*(360.0f/(float)TABLE_SIZE)));
  742. sinTable[x] = TOFIX(sin(x*(360.0f/(float)TABLE_SIZE)));
  743. }
  744. for(x=0; x<TEXTURE_SIZE; x++) { /* start of lines offsets */
  745. yTable[x] = x*TEXTURE_SIZE;
  746. }
  747. break;
  748. case PREPARE:
  749. break;
  750. case UPDATE:
  751. alphaF += 4;
  752. tF += 3;
  753. scaleF = FMUL(sinTable[tF&0xFFFF], TOFIX(3)) + TOFIX(4);
  754. xxF = FMUL(cosTable[(alphaF)&0xFFFF], scaleF);
  755. yyF = FMUL(sinTable[(alphaF)&0xFFFF], scaleF);
  756. uF = vF = 0;
  757. uF_ = vF_ = 0;
  758. screen = save;
  759. y = YSIZ;
  760. while(y--) {
  761. x = XSIZ;
  762. while(x--) {
  763. uF+=xxF;
  764. vF+=yyF;
  765. vu = TOINT(uF);
  766. vv = TOINT(vF);
  767. vu&=0xFF; /* ARM doesn't like */
  768. vv&=0xFF; /* chars as local vars */
  769. *screen++ = texture[vu+yTable[vv]];
  770. }
  771. uF = uF_ -= yyF;
  772. vF = vF_ += xxF;
  773. }
  774. break;
  775. case RENDER:
  776. cucul_dither_bitmap(canvas, 0, 0,
  777. cucul_get_canvas_width(canvas),
  778. cucul_get_canvas_height(canvas),
  779. dither, save);
  780. break;
  781. case FREE:
  782. free(cosTable);
  783. free(sinTable);
  784. free(save);
  785. cucul_free_dither(dither);
  786. break;
  787. }
  788. }