Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 
 
 
 
 

801 linhas
22 KiB

  1. /*
  2. * cacademo various demo effects for libcaca
  3. * Copyright (c) 1998 Michele Bini <mibin@tin.it>
  4. * 2003-2006 Jean-Yves Lamoureux <jylam@lnxscene.org>
  5. * 2004-2006 Sam Hocevar <sam@zoy.org>
  6. * All Rights Reserved
  7. *
  8. * $Id$
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the Do What The Fuck You Want To
  12. * Public License, Version 2, as published by Sam Hocevar. See
  13. * http://sam.zoy.org/wtfpl/COPYING for more details.
  14. */
  15. #include "config.h"
  16. #include "common.h"
  17. #if !defined(__KERNEL__)
  18. # include <stdio.h>
  19. # include <stdlib.h>
  20. # include <string.h>
  21. # include <math.h>
  22. # ifndef M_PI
  23. # define M_PI 3.14159265358979323846
  24. # endif
  25. #endif
  26. #include "cucul.h"
  27. #include "caca.h"
  28. enum action { PREPARE, INIT, UPDATE, RENDER, FREE };
  29. void do_transition(cucul_canvas_t *mask, int transition, float time);
  30. void plasma(enum action, cucul_canvas_t *);
  31. void metaballs(enum action, cucul_canvas_t *);
  32. void moire(enum action, cucul_canvas_t *);
  33. void langton(enum action, cucul_canvas_t *);
  34. void matrix(enum action, cucul_canvas_t *);
  35. void (*fn[])(enum action, cucul_canvas_t *) =
  36. {
  37. plasma,
  38. metaballs,
  39. moire,
  40. //langton,
  41. matrix,
  42. };
  43. #define DEMOS (sizeof(fn)/sizeof(*fn))
  44. #define DEMO_FRAMES 1000
  45. #define TRANSITION_FRAMES 40
  46. #define TRANSITION_COUNT 2
  47. #define TRANSITION_CIRCLE 0
  48. #define TRANSITION_STAR 1
  49. /* Common macros for dither-based demos */
  50. #define XSIZ 256
  51. #define YSIZ 256
  52. #define OFFSET_X(i) (i*2)
  53. #define OFFSET_Y(i) (i*2)+1
  54. /* Global variables */
  55. static int frame = 0;
  56. int main(int argc, char **argv)
  57. {
  58. static caca_display_t *dp;
  59. static cucul_canvas_t *frontcv, *backcv, *mask;
  60. int demo, next = -1, pause = 0, next_transition = DEMO_FRAMES;
  61. unsigned int i;
  62. int transition = cucul_rand(0, TRANSITION_COUNT);
  63. /* Set up two canvases, a mask, and attach a display to the front one */
  64. frontcv = cucul_create_canvas(0, 0);
  65. backcv = cucul_create_canvas(0, 0);
  66. mask = cucul_create_canvas(0, 0);
  67. dp = caca_create_display(frontcv);
  68. if(!dp)
  69. return 1;
  70. cucul_set_canvas_size(backcv, cucul_get_canvas_width(frontcv),
  71. cucul_get_canvas_height(frontcv));
  72. cucul_set_canvas_size(mask, cucul_get_canvas_width(frontcv),
  73. cucul_get_canvas_height(frontcv));
  74. caca_set_display_time(dp, 20000);
  75. /* Initialise all demos' lookup tables */
  76. for(i = 0; i < DEMOS; i++)
  77. fn[i](PREPARE, frontcv);
  78. /* Choose a demo at random */
  79. demo = cucul_rand(0, DEMOS);
  80. fn[demo](INIT, frontcv);
  81. for(;;)
  82. {
  83. /* Handle events */
  84. caca_event_t ev;
  85. while(caca_get_event(dp, CACA_EVENT_KEY_PRESS
  86. | CACA_EVENT_QUIT, &ev, 0))
  87. {
  88. if(ev.type == CACA_EVENT_QUIT)
  89. goto end;
  90. switch(ev.data.key.ch)
  91. {
  92. case CACA_KEY_ESCAPE:
  93. goto end;
  94. case ' ':
  95. pause = !pause;
  96. break;
  97. case 'n':
  98. if(next == -1)
  99. next_transition = frame;
  100. break;
  101. }
  102. }
  103. /* Resize the spare canvas, just in case the main one changed */
  104. cucul_set_canvas_size(backcv, cucul_get_canvas_width(frontcv),
  105. cucul_get_canvas_height(frontcv));
  106. cucul_set_canvas_size(mask, cucul_get_canvas_width(frontcv),
  107. cucul_get_canvas_height(frontcv));
  108. if(pause)
  109. goto paused;
  110. /* Update demo's data */
  111. fn[demo](UPDATE, frontcv);
  112. /* Handle transitions */
  113. if(frame == next_transition)
  114. {
  115. next = cucul_rand(0, DEMOS);
  116. if(next == demo)
  117. next = (next + 1) % DEMOS;
  118. fn[next](INIT, backcv);
  119. }
  120. else if(frame == next_transition + TRANSITION_FRAMES)
  121. {
  122. fn[demo](FREE, frontcv);
  123. demo = next;
  124. next = -1;
  125. next_transition = frame + DEMO_FRAMES;
  126. }
  127. if(next != -1)
  128. fn[next](UPDATE, backcv);
  129. frame++;
  130. paused:
  131. /* Render main demo's canvas */
  132. fn[demo](RENDER, frontcv);
  133. /* If a transition is on its way, render it */
  134. if(next != -1)
  135. {
  136. fn[next](RENDER, backcv);
  137. cucul_set_color(mask, CUCUL_COLOR_LIGHTGRAY, CUCUL_COLOR_BLACK);
  138. cucul_clear_canvas(mask);
  139. cucul_set_color(mask, CUCUL_COLOR_WHITE, CUCUL_COLOR_WHITE);
  140. do_transition(mask,
  141. transition,
  142. (float)(frame - next_transition) / TRANSITION_FRAMES * 3.0f / 4.0f);
  143. cucul_blit(frontcv, 0, 0, backcv, mask);
  144. } else {
  145. transition = cucul_rand(0, TRANSITION_COUNT);
  146. }
  147. cucul_set_color(frontcv, CUCUL_COLOR_WHITE, CUCUL_COLOR_BLUE);
  148. cucul_putstr(frontcv, cucul_get_canvas_width(frontcv) - 30,
  149. cucul_get_canvas_height(frontcv) - 2,
  150. " -=[ Powered by libcaca ]=- ");
  151. caca_refresh_display(dp);
  152. }
  153. end:
  154. if(next != -1)
  155. fn[next](FREE, frontcv);
  156. fn[demo](FREE, frontcv);
  157. caca_free_display(dp);
  158. cucul_free_canvas(mask);
  159. cucul_free_canvas(backcv);
  160. cucul_free_canvas(frontcv);
  161. return 0;
  162. }
  163. /* Transitions */
  164. void do_transition(cucul_canvas_t *mask, int transition, float time)
  165. {
  166. static float const star[] =
  167. {
  168. 0.000000, -1.000000,
  169. 0.308000, -0.349000,
  170. 0.992000, -0.244000,
  171. 0.500000, 0.266000,
  172. 0.632000, 0.998000,
  173. 0.008000, 0.659000,
  174. -0.601000, 0.995000,
  175. -0.496000, 0.275000,
  176. -0.997000, -0.244000,
  177. -0.313000, -0.349000
  178. };
  179. static float star_rot[sizeof(star)/sizeof(*star)];
  180. float mulx = time * cucul_get_canvas_width(mask);
  181. float muly = time * cucul_get_canvas_height(mask);
  182. int w2 = cucul_get_canvas_width(mask) / 2;
  183. int h2 = cucul_get_canvas_height(mask) / 2;
  184. float angle = (time*360)*3.14/180, x,y;
  185. unsigned int i;
  186. switch(transition)
  187. {
  188. case TRANSITION_STAR:
  189. /* Compute rotated coordinates */
  190. for(i = 0; i < (sizeof(star) / sizeof(*star)) / 2; i++)
  191. {
  192. x = star[OFFSET_X(i)];
  193. y = star[OFFSET_Y(i)];
  194. star_rot[OFFSET_X(i)] = x * cos(angle) - y * sin(angle);
  195. star_rot[OFFSET_Y(i)] = y * cos(angle) + x * sin(angle);
  196. }
  197. mulx *= 1.8;
  198. muly *= 1.8;
  199. #define DO_TRI(a, b, c) \
  200. cucul_fill_triangle(mask, \
  201. star_rot[OFFSET_X(a)]*mulx+w2, star_rot[OFFSET_Y(a)]*muly+h2, \
  202. star_rot[OFFSET_X(b)]*mulx+w2, star_rot[OFFSET_Y(b)]*muly+h2, \
  203. star_rot[OFFSET_X(c)]*mulx+w2, star_rot[OFFSET_Y(c)]*muly+h2, "#")
  204. DO_TRI(0, 1, 9);
  205. DO_TRI(1, 2, 3);
  206. DO_TRI(3, 4, 5);
  207. DO_TRI(5, 6, 7);
  208. DO_TRI(7, 8, 9);
  209. DO_TRI(9, 1, 5);
  210. DO_TRI(9, 5, 7);
  211. DO_TRI(1, 3, 5);
  212. break;
  213. case TRANSITION_CIRCLE:
  214. cucul_fill_ellipse(mask, w2, h2, mulx, muly, "#");
  215. break;
  216. }
  217. }
  218. /* The plasma effect */
  219. #define TABLEX (XSIZ * 2)
  220. #define TABLEY (YSIZ * 2)
  221. static uint8_t table[TABLEX * TABLEY];
  222. static void do_plasma(uint8_t *,
  223. double, double, double, double, double, double);
  224. void plasma(enum action action, cucul_canvas_t *cv)
  225. {
  226. static cucul_dither_t *dither;
  227. static uint8_t *screen;
  228. static unsigned int red[256], green[256], blue[256], alpha[256];
  229. static double r[3], R[6];
  230. int i, x, y;
  231. switch(action)
  232. {
  233. case PREPARE:
  234. /* Fill various tables */
  235. for(i = 0 ; i < 256; i++)
  236. red[i] = green[i] = blue[i] = alpha[i] = 0;
  237. for(i = 0; i < 3; i++)
  238. r[i] = (double)(cucul_rand(1, 1000)) / 60000 * M_PI;
  239. for(i = 0; i < 6; i++)
  240. R[i] = (double)(cucul_rand(1, 1000)) / 10000;
  241. for(y = 0 ; y < TABLEY ; y++)
  242. for(x = 0 ; x < TABLEX ; x++)
  243. {
  244. double tmp = (((double)((x - (TABLEX / 2)) * (x - (TABLEX / 2))
  245. + (y - (TABLEX / 2)) * (y - (TABLEX / 2))))
  246. * (M_PI / (TABLEX * TABLEX + TABLEY * TABLEY)));
  247. table[x + y * TABLEX] = (1.0 + sin(12.0 * sqrt(tmp))) * 256 / 6;
  248. }
  249. break;
  250. case INIT:
  251. screen = malloc(XSIZ * YSIZ * sizeof(uint8_t));
  252. dither = cucul_create_dither(8, XSIZ, YSIZ, XSIZ, 0, 0, 0, 0);
  253. break;
  254. case UPDATE:
  255. for(i = 0 ; i < 256; i++)
  256. {
  257. double z = ((double)i) / 256 * 6 * M_PI;
  258. red[i] = (1.0 + sin(z + r[1] * frame)) / 2 * 0xfff;
  259. blue[i] = (1.0 + cos(z + r[0] * frame)) / 2 * 0xfff;
  260. green[i] = (1.0 + cos(z + r[2] * frame)) / 2 * 0xfff;
  261. }
  262. /* Set the palette */
  263. cucul_set_dither_palette(dither, red, green, blue, alpha);
  264. do_plasma(screen,
  265. (1.0 + sin(((double)frame) * R[0])) / 2,
  266. (1.0 + sin(((double)frame) * R[1])) / 2,
  267. (1.0 + sin(((double)frame) * R[2])) / 2,
  268. (1.0 + sin(((double)frame) * R[3])) / 2,
  269. (1.0 + sin(((double)frame) * R[4])) / 2,
  270. (1.0 + sin(((double)frame) * R[5])) / 2);
  271. break;
  272. case RENDER:
  273. cucul_dither_bitmap(cv, 0, 0,
  274. cucul_get_canvas_width(cv),
  275. cucul_get_canvas_height(cv),
  276. dither, screen);
  277. break;
  278. case FREE:
  279. free(screen);
  280. cucul_free_dither(dither);
  281. break;
  282. }
  283. }
  284. static void do_plasma(uint8_t *pixels, double x_1, double y_1,
  285. double x_2, double y_2, double x_3, double y_3)
  286. {
  287. unsigned int X1 = x_1 * (TABLEX / 2),
  288. Y1 = y_1 * (TABLEY / 2),
  289. X2 = x_2 * (TABLEX / 2),
  290. Y2 = y_2 * (TABLEY / 2),
  291. X3 = x_3 * (TABLEX / 2),
  292. Y3 = y_3 * (TABLEY / 2);
  293. unsigned int y;
  294. uint8_t * t1 = table + X1 + Y1 * TABLEX,
  295. * t2 = table + X2 + Y2 * TABLEX,
  296. * t3 = table + X3 + Y3 * TABLEX;
  297. for(y = 0; y < YSIZ; y++)
  298. {
  299. unsigned int x;
  300. uint8_t * tmp = pixels + y * YSIZ;
  301. unsigned int ty = y * TABLEX, tmax = ty + XSIZ;
  302. for(x = 0; ty < tmax; ty++, tmp++)
  303. tmp[0] = t1[ty] + t2[ty] + t3[ty];
  304. }
  305. }
  306. /* The metaball effect */
  307. #define METASIZE (XSIZ/2)
  308. #define METABALLS 12
  309. #define CROPBALL 200 /* Colour index where to crop balls */
  310. static uint8_t metaball[METASIZE * METASIZE];
  311. static void create_ball(void);
  312. static void draw_ball(uint8_t *, unsigned int, unsigned int);
  313. void metaballs(enum action action, cucul_canvas_t *cv)
  314. {
  315. static cucul_dither_t *cucul_dither;
  316. static uint8_t *screen;
  317. static unsigned int r[256], g[256], b[256], a[256];
  318. static float dd[METABALLS], di[METABALLS], dj[METABALLS], dk[METABALLS];
  319. static unsigned int x[METABALLS], y[METABALLS];
  320. static float i = 10.0, j = 17.0, k = 11.0;
  321. static double offset[360 + 80];
  322. int n, angle;
  323. switch(action)
  324. {
  325. case PREPARE:
  326. /* Make the palette eatable by libcaca */
  327. for(n = 0; n < 256; n++)
  328. r[n] = g[n] = b[n] = a[n] = 0x0;
  329. r[255] = g[255] = b[255] = 0xfff;
  330. /* Generate ball sprite */
  331. create_ball();
  332. for(n = 0; n < METABALLS; n++)
  333. {
  334. dd[n] = cucul_rand(0, 100);
  335. di[n] = (float)cucul_rand(500, 4000) / 6000.0;
  336. dj[n] = (float)cucul_rand(500, 4000) / 6000.0;
  337. dk[n] = (float)cucul_rand(500, 4000) / 6000.0;
  338. }
  339. for(n = 0; n < 360 + 80; n++)
  340. offset[n] = 1.0 + sin((double)(n * M_PI / 60));
  341. break;
  342. case INIT:
  343. screen = malloc(XSIZ * YSIZ * sizeof(uint8_t));
  344. /* Create a libcucul dither smaller than our pixel buffer, so that we
  345. * display only the interesting part of it */
  346. cucul_dither = cucul_create_dither(8, XSIZ - METASIZE, YSIZ - METASIZE,
  347. XSIZ, 0, 0, 0, 0);
  348. break;
  349. case UPDATE:
  350. angle = frame % 360;
  351. /* Crop the palette */
  352. for(n = CROPBALL; n < 255; n++)
  353. {
  354. int t1, t2, t3;
  355. double c1 = offset[angle];
  356. double c2 = offset[angle + 40];
  357. double c3 = offset[angle + 80];
  358. t1 = n < 0x40 ? 0 : n < 0xc0 ? (n - 0x40) * 0x20 : 0xfff;
  359. t2 = n < 0xe0 ? 0 : (n - 0xe0) * 0x80;
  360. t3 = n < 0x40 ? n * 0x40 : 0xfff;
  361. r[n] = (c1 * t1 + c2 * t2 + c3 * t3) / 4;
  362. g[n] = (c1 * t2 + c2 * t3 + c3 * t1) / 4;
  363. b[n] = (c1 * t3 + c2 * t1 + c3 * t2) / 4;
  364. }
  365. /* Set the palette */
  366. cucul_set_dither_palette(cucul_dither, r, g, b, a);
  367. /* Silly paths for our balls */
  368. for(n = 0; n < METABALLS; n++)
  369. {
  370. float u = di[n] * i + dj[n] * j + dk[n] * sin(di[n] * k);
  371. float v = dd[n] + di[n] * j + dj[n] * k + dk[n] * sin(dk[n] * i);
  372. u = sin(i + u * 2.1) * (1.0 + sin(u));
  373. v = sin(j + v * 1.9) * (1.0 + sin(v));
  374. x[n] = (XSIZ - METASIZE) / 2 + u * (XSIZ - METASIZE) / 4;
  375. y[n] = (YSIZ - METASIZE) / 2 + v * (YSIZ - METASIZE) / 4;
  376. }
  377. i += 0.011;
  378. j += 0.017;
  379. k += 0.019;
  380. memset(screen, 0, XSIZ * YSIZ);
  381. for(n = 0; n < METABALLS; n++)
  382. draw_ball(screen, x[n], y[n]);
  383. break;
  384. case RENDER:
  385. cucul_dither_bitmap(cv, 0, 0,
  386. cucul_get_canvas_width(cv),
  387. cucul_get_canvas_height(cv),
  388. cucul_dither, screen + (METASIZE / 2) * (1 + XSIZ));
  389. break;
  390. case FREE:
  391. free(screen);
  392. cucul_free_dither(cucul_dither);
  393. break;
  394. }
  395. }
  396. static void create_ball(void)
  397. {
  398. int x, y;
  399. float distance;
  400. for(y = 0; y < METASIZE; y++)
  401. for(x = 0; x < METASIZE; x++)
  402. {
  403. distance = ((METASIZE/2) - x) * ((METASIZE/2) - x)
  404. + ((METASIZE/2) - y) * ((METASIZE/2) - y);
  405. distance = sqrt(distance) * 64 / METASIZE;
  406. metaball[x + y * METASIZE] = distance > 15 ? 0 : (255 - distance) * 15;
  407. }
  408. }
  409. static void draw_ball(uint8_t *screen, unsigned int bx, unsigned int by)
  410. {
  411. unsigned int color;
  412. unsigned int i, e = 0;
  413. unsigned int b = (by * XSIZ) + bx;
  414. for(i = 0; i < METASIZE * METASIZE; i++)
  415. {
  416. color = screen[b] + metaball[i];
  417. if(color > 255)
  418. color = 255;
  419. screen[b] = color;
  420. if(e == METASIZE)
  421. {
  422. e = 0;
  423. b += XSIZ - METASIZE;
  424. }
  425. b++;
  426. e++;
  427. }
  428. }
  429. /* The moiré effect */
  430. #define DISCSIZ (XSIZ*2)
  431. #define DISCTHICKNESS (XSIZ*15/40)
  432. static uint8_t disc[DISCSIZ * DISCSIZ];
  433. static void put_disc(uint8_t *, int, int);
  434. static void draw_line(int, int, char);
  435. void moire(enum action action, cucul_canvas_t *cv)
  436. {
  437. static cucul_dither_t *dither;
  438. static uint8_t *screen;
  439. static unsigned int red[256], green[256], blue[256], alpha[256];
  440. int i, x, y;
  441. switch(action)
  442. {
  443. case PREPARE:
  444. /* Fill various tables */
  445. for(i = 0 ; i < 256; i++)
  446. red[i] = green[i] = blue[i] = alpha[i] = 0;
  447. red[0] = green[0] = blue[0] = 0x777;
  448. red[1] = green[1] = blue[1] = 0xfff;
  449. /* Fill the circle */
  450. for(i = DISCSIZ * 2; i > 0; i -= DISCTHICKNESS)
  451. {
  452. int t, dx, dy;
  453. for(t = 0, dx = 0, dy = i; dx <= dy; dx++)
  454. {
  455. draw_line(dx / 3, dy / 3, (i / DISCTHICKNESS) % 2);
  456. draw_line(dy / 3, dx / 3, (i / DISCTHICKNESS) % 2);
  457. t += t > 0 ? dx - dy-- : dx;
  458. }
  459. }
  460. break;
  461. case INIT:
  462. screen = malloc(XSIZ * YSIZ * sizeof(uint8_t));
  463. dither = cucul_create_dither(8, XSIZ, YSIZ, XSIZ, 0, 0, 0, 0);
  464. break;
  465. case UPDATE:
  466. memset(screen, 0, XSIZ * YSIZ);
  467. /* Set the palette */
  468. red[0] = 0.5 * (1 + sin(0.05 * frame)) * 0xfff;
  469. green[0] = 0.5 * (1 + cos(0.07 * frame)) * 0xfff;
  470. blue[0] = 0.5 * (1 + cos(0.06 * frame)) * 0xfff;
  471. red[1] = 0.5 * (1 + sin(0.07 * frame + 5.0)) * 0xfff;
  472. green[1] = 0.5 * (1 + cos(0.06 * frame + 5.0)) * 0xfff;
  473. blue[1] = 0.5 * (1 + cos(0.05 * frame + 5.0)) * 0xfff;
  474. cucul_set_dither_palette(dither, red, green, blue, alpha);
  475. /* Draw circles */
  476. x = cos(0.07 * frame + 5.0) * 128.0 + (XSIZ / 2);
  477. y = sin(0.11 * frame) * 128.0 + (YSIZ / 2);
  478. put_disc(screen, x, y);
  479. x = cos(0.13 * frame + 2.0) * 64.0 + (XSIZ / 2);
  480. y = sin(0.09 * frame + 1.0) * 64.0 + (YSIZ / 2);
  481. put_disc(screen, x, y);
  482. break;
  483. case RENDER:
  484. cucul_dither_bitmap(cv, 0, 0,
  485. cucul_get_canvas_width(cv),
  486. cucul_get_canvas_height(cv),
  487. dither, screen);
  488. break;
  489. case FREE:
  490. free(screen);
  491. cucul_free_dither(dither);
  492. break;
  493. }
  494. }
  495. static void put_disc(uint8_t *screen, int x, int y)
  496. {
  497. char *src = ((char*)disc) + (DISCSIZ / 2 - x) + (DISCSIZ / 2 - y) * DISCSIZ;
  498. int i, j;
  499. for(j = 0; j < YSIZ; j++)
  500. for(i = 0; i < XSIZ; i++)
  501. {
  502. screen[i + XSIZ * j] ^= src[i + DISCSIZ * j];
  503. }
  504. }
  505. static void draw_line(int x, int y, char color)
  506. {
  507. if(x == 0 || y == 0 || y > DISCSIZ / 2)
  508. return;
  509. if(x > DISCSIZ / 2)
  510. x = DISCSIZ / 2;
  511. memset(disc + (DISCSIZ / 2) - x + DISCSIZ * ((DISCSIZ / 2) - y),
  512. color, 2 * x - 1);
  513. memset(disc + (DISCSIZ / 2) - x + DISCSIZ * ((DISCSIZ / 2) + y - 1),
  514. color, 2 * x - 1);
  515. }
  516. /* Langton ant effect */
  517. #define ANTS 15
  518. #define ITER 2
  519. void langton(enum action action, cucul_canvas_t *cv)
  520. {
  521. static char gradient[] =
  522. {
  523. ' ', ' ', '.', '.', ':', ':', 'x', 'x',
  524. 'X', 'X', '&', '&', 'W', 'W', '@', '@',
  525. };
  526. static int steps[][2] = { { 0, 1 }, { 1, 0 }, { 0, -1 }, { -1, 0 } };
  527. static uint8_t *screen;
  528. static int width, height;
  529. static int ax[ANTS], ay[ANTS], dir[ANTS];
  530. int i, a, x, y;
  531. switch(action)
  532. {
  533. case PREPARE:
  534. width = cucul_get_canvas_width(cv);
  535. height = cucul_get_canvas_height(cv);
  536. for(i = 0; i < ANTS; i++)
  537. {
  538. ax[i] = cucul_rand(0, width);
  539. ay[i] = cucul_rand(0, height);
  540. dir[i] = cucul_rand(0, 4);
  541. }
  542. break;
  543. case INIT:
  544. screen = malloc(width * height);
  545. memset(screen, 0, width * height);
  546. break;
  547. case UPDATE:
  548. for(i = 0; i < ITER; i++)
  549. {
  550. for(x = 0; x < width * height; x++)
  551. {
  552. uint8_t p = screen[x];
  553. if((p & 0x0f) > 1)
  554. screen[x] = p - 1;
  555. }
  556. for(a = 0; a < ANTS; a++)
  557. {
  558. uint8_t p = screen[ax[a] + width * ay[a]];
  559. if(p & 0x0f)
  560. {
  561. dir[a] = (dir[a] + 1) % 4;
  562. screen[ax[a] + width * ay[a]] = a << 4;
  563. }
  564. else
  565. {
  566. dir[a] = (dir[a] + 3) % 4;
  567. screen[ax[a] + width * ay[a]] = (a << 4) | 0x0f;
  568. }
  569. ax[a] = (width + ax[a] + steps[dir[a]][0]) % width;
  570. ay[a] = (height + ay[a] + steps[dir[a]][1]) % height;
  571. }
  572. }
  573. break;
  574. case RENDER:
  575. for(y = 0; y < height; y++)
  576. {
  577. for(x = 0; x < width; x++)
  578. {
  579. uint8_t p = screen[x + width * y];
  580. if(p & 0x0f)
  581. cucul_set_color(cv, CUCUL_COLOR_WHITE, p >> 4);
  582. else
  583. cucul_set_color(cv, CUCUL_COLOR_BLACK, CUCUL_COLOR_BLACK);
  584. cucul_putchar(cv, x, y, gradient[p & 0x0f]);
  585. }
  586. }
  587. break;
  588. case FREE:
  589. free(screen);
  590. break;
  591. }
  592. }
  593. /* Matrix effect */
  594. #define MAXDROPS 500
  595. #define MINLEN 15
  596. #define MAXLEN 30
  597. void matrix(enum action action, cucul_canvas_t *cv)
  598. {
  599. static struct drop
  600. {
  601. int x, y, speed, len;
  602. char str[MAXLEN];
  603. }
  604. drop[MAXDROPS];
  605. int w, h, i, j;
  606. switch(action)
  607. {
  608. case PREPARE:
  609. for(i = 0; i < MAXDROPS; i++)
  610. {
  611. drop[i].x = cucul_rand(0, 1000);
  612. drop[i].y = cucul_rand(0, 1000);
  613. drop[i].speed = 5 + cucul_rand(0, 30);
  614. drop[i].len = MINLEN + cucul_rand(0, (MAXLEN - MINLEN));
  615. for(j = 0; j < MAXLEN; j++)
  616. drop[i].str[j] = cucul_rand('0', 'z');
  617. }
  618. break;
  619. case INIT:
  620. break;
  621. case UPDATE:
  622. w = cucul_get_canvas_width(cv);
  623. h = cucul_get_canvas_height(cv);
  624. for(i = 0; i < MAXDROPS && i < (w * h / 32); i++)
  625. {
  626. drop[i].y += drop[i].speed;
  627. if(drop[i].y > 1000)
  628. {
  629. drop[i].y -= 1000;
  630. drop[i].x = cucul_rand(0, 1000);
  631. }
  632. }
  633. break;
  634. case RENDER:
  635. w = cucul_get_canvas_width(cv);
  636. h = cucul_get_canvas_height(cv);
  637. cucul_set_color(cv, CUCUL_COLOR_BLACK, CUCUL_COLOR_BLACK);
  638. cucul_clear_canvas(cv);
  639. for(i = 0; i < MAXDROPS && i < (w * h / 32); i++)
  640. {
  641. int x, y;
  642. x = drop[i].x * w / 1000 / 2 * 2;
  643. y = drop[i].y * (h + MAXLEN) / 1000;
  644. for(j = 0; j < drop[i].len; j++)
  645. {
  646. unsigned int fg;
  647. if(j < 2)
  648. fg = CUCUL_COLOR_WHITE;
  649. else if(j < drop[i].len / 4)
  650. fg = CUCUL_COLOR_LIGHTGREEN;
  651. else if(j < drop[i].len * 4 / 5)
  652. fg = CUCUL_COLOR_GREEN;
  653. else
  654. fg = CUCUL_COLOR_DARKGRAY;
  655. cucul_set_color(cv, fg, CUCUL_COLOR_BLACK);
  656. cucul_putchar(cv, x, y - j,
  657. drop[i].str[(y - j) % drop[i].len]);
  658. }
  659. }
  660. break;
  661. case FREE:
  662. break;
  663. }
  664. }