|
|
@@ -24,46 +24,35 @@ |
|
|
|
#include "pipi.h" |
|
|
|
#include "pipi_internals.h" |
|
|
|
|
|
|
|
#define N 5 |
|
|
|
#define N 7 |
|
|
|
#define NN ((N * 2 + 1)) |
|
|
|
|
|
|
|
/* FIXME: use a better HVS than a simple gaussian; adding two gaussians |
|
|
|
* seemed to be a lot more efficient. Get rid of pipi_gaussian_blur calls |
|
|
|
* at the same time. */ |
|
|
|
/* FIXME: though the algorithm is supposed to stop, we do not have a real, |
|
|
|
* guaranteed stop condition here. */ |
|
|
|
|
|
|
|
static void makegauss(double mat[NN][NN], double sigma) |
|
|
|
pipi_image_t *pipi_dbs(pipi_image_t *src) |
|
|
|
{ |
|
|
|
double t = 0; |
|
|
|
int i, j; |
|
|
|
|
|
|
|
sigma = 2. * sigma * sigma; |
|
|
|
double kernel[NN * NN]; |
|
|
|
double t = 0.; |
|
|
|
pipi_image_t *dst, *tmp1, *tmp2; |
|
|
|
pipi_pixels_t *srcp, *dstp, *tmp1p, *tmp2p; |
|
|
|
float *srcdata, *dstdata, *tmp1data, *tmp2data; |
|
|
|
int i, j, w, h; |
|
|
|
|
|
|
|
for(j = 0; j < NN; j++) |
|
|
|
for(i = 0; i < NN; i++) |
|
|
|
{ |
|
|
|
double a = (double)(i - N); |
|
|
|
double b = (double)(j - N); |
|
|
|
mat[i][j] = pow(M_E, - (a * a + b * b) / sigma); |
|
|
|
t += mat[i][j]; |
|
|
|
kernel[j * NN + i] = |
|
|
|
1.0 * exp(-(a * a + b * b) / (2. * 1.5 * 1.5)) |
|
|
|
+ 0.1 * exp(-(a * a + b * b) / (2. * 0.6 * 0.6)); |
|
|
|
t += kernel[j * NN + i]; |
|
|
|
} |
|
|
|
|
|
|
|
for(j = 0; j < NN; j++) |
|
|
|
for(i = 0; i < NN; i++) |
|
|
|
mat[i][j] /= t; |
|
|
|
} |
|
|
|
|
|
|
|
pipi_image_t *pipi_dbs(pipi_image_t *src) |
|
|
|
{ |
|
|
|
double mat[NN][NN]; |
|
|
|
double sigma = 1.2; |
|
|
|
pipi_image_t *dst, *tmp1, *tmp2; |
|
|
|
pipi_pixels_t *srcp, *dstp, *tmp1p, *tmp2p; |
|
|
|
float *srcdata, *dstdata, *tmp1data, *tmp2data; |
|
|
|
int w, h; |
|
|
|
|
|
|
|
makegauss(mat, sigma); |
|
|
|
kernel[j * NN + i] /= t; |
|
|
|
|
|
|
|
w = src->w; |
|
|
|
h = src->h; |
|
|
@@ -71,25 +60,25 @@ pipi_image_t *pipi_dbs(pipi_image_t *src) |
|
|
|
srcp = pipi_getpixels(src, PIPI_PIXELS_Y_F); |
|
|
|
srcdata = (float *)srcp->pixels; |
|
|
|
|
|
|
|
tmp1 = pipi_gaussian_blur(src, sigma); |
|
|
|
tmp1 = pipi_convolution(src, NN, NN, kernel); |
|
|
|
tmp1p = pipi_getpixels(tmp1, PIPI_PIXELS_Y_F); |
|
|
|
tmp1data = (float *)tmp1p->pixels; |
|
|
|
|
|
|
|
/* The initial dither is an empty image. So is its blurred version, |
|
|
|
* but I leave the pipi_gaussian_blur() call here in case we choose |
|
|
|
* but I leave the pipi_convolution() call here in case we choose |
|
|
|
* to change the way to create the initial dither. */ |
|
|
|
dst = pipi_new(w, h); |
|
|
|
dstp = pipi_getpixels(dst, PIPI_PIXELS_Y_F); |
|
|
|
dstdata = (float *)dstp->pixels; |
|
|
|
|
|
|
|
tmp2 = pipi_gaussian_blur(dst, sigma); |
|
|
|
tmp2 = pipi_convolution(dst, NN, NN, kernel); |
|
|
|
tmp2p = pipi_getpixels(tmp2, PIPI_PIXELS_Y_F); |
|
|
|
tmp2data = (float *)tmp2p->pixels; |
|
|
|
|
|
|
|
for(;;) |
|
|
|
{ |
|
|
|
int changes = 0; |
|
|
|
int x, y, i, j, n; |
|
|
|
int x, y, n; |
|
|
|
|
|
|
|
for(y = 0; y < h; y++) |
|
|
|
for(x = 0; x < w; x++) |
|
|
@@ -113,7 +102,7 @@ pipi_image_t *pipi_dbs(pipi_image_t *src) |
|
|
|
if(x + i < 0 || x + i >= w) |
|
|
|
continue; |
|
|
|
|
|
|
|
m = mat[i + N][j + N]; |
|
|
|
m = kernel[(j + N) * NN + i + N]; |
|
|
|
p = tmp1data[(y + j) * w + x + i]; |
|
|
|
q1 = tmp2data[(y + j) * w + x + i]; |
|
|
|
q2 = q1 - m * d + m * (1. - d); |
|
|
@@ -152,8 +141,8 @@ pipi_image_t *pipi_dbs(pipi_image_t *src) |
|
|
|
continue; |
|
|
|
if(i - idx + N < 0 || i - idx + N >= NN) |
|
|
|
continue; |
|
|
|
ma = mat[i + N][j + N]; |
|
|
|
mb = mat[i - idx + N][j - idy + N]; |
|
|
|
ma = kernel[(j + N) * NN + i + N]; |
|
|
|
mb = kernel[(j - idy + N) * NN + i - idx + N]; |
|
|
|
p = tmp1data[(y + j) * w + x + i]; |
|
|
|
q1 = tmp2data[(y + j) * w + x + i]; |
|
|
|
q2 = q1 - ma * d + ma * d2 - mb * d2 + mb * d; |
|
|
@@ -182,17 +171,17 @@ pipi_image_t *pipi_dbs(pipi_image_t *src) |
|
|
|
for(j = -N; j < N + 1; j++) |
|
|
|
for(i = -N; i < N + 1; i++) |
|
|
|
{ |
|
|
|
double m = mat[i + N][j + N]; |
|
|
|
double m = kernel[(j + N) * NN + i + N]; |
|
|
|
if(y + j >= 0 && y + j < h |
|
|
|
&& x + i >= 0 && x + i < w) |
|
|
|
{ |
|
|
|
double t = tmp2data[(y + j) * w + x + i]; |
|
|
|
t = tmp2data[(y + j) * w + x + i]; |
|
|
|
tmp2data[(y + j) * w + x + i] = t + m * (d2 - d); |
|
|
|
} |
|
|
|
if((opx || opy) && y + opy + j >= 0 && y + opy + j < h |
|
|
|
&& x + opx + i >= 0 && x + opx + i < w) |
|
|
|
{ |
|
|
|
double t = tmp2data[(y + opy + j) * w + x + opx + i]; |
|
|
|
t = tmp2data[(y + opy + j) * w + x + opx + i]; |
|
|
|
tmp2data[(y + opy + j) * w + x + opx + i] |
|
|
|
= t + m * (d - d2); |
|
|
|
} |
|
|
|