git-svn-id: file:///srv/caca.zoy.org/var/lib/svn/libpipi/trunk@2736 92316355-f0b4-4df1-b90c-862c8a59935fremotes/tiles
@@ -8,331 +8,8 @@ | |||||
#include <pipi.h> | #include <pipi.h> | ||||
#define R 0 | |||||
#define G 1 | |||||
#define B 2 | |||||
#define X 3 | |||||
#define Y 4 | |||||
#define A 5 | |||||
//#define debug printf | |||||
#define debug(...) /* */ | |||||
#define BRIGHT(x) (0.299*(x)[0] + 0.587*(x)[1] + 0.114*(x)[2]) | |||||
#define MAXCOLORS 16 | |||||
#define STEPS 256 | |||||
#define EPSILON (0.000001) | |||||
typedef struct | |||||
{ | |||||
double pts[STEPS + 1][MAXCOLORS * (MAXCOLORS - 1) / 2][6]; | |||||
int hullsize[STEPS + 1]; | |||||
double bary[STEPS + 1][3]; | |||||
} | |||||
hull_t; | |||||
static double const y[3] = { .299, .587, .114 }; | |||||
static double u[3], v[3]; | |||||
static int ylen; | |||||
/* | |||||
* Find two base vectors for the chrominance planes. | |||||
*/ | |||||
static void init_uv(void) | |||||
{ | |||||
double tmp; | |||||
ylen = sqrt(y[R] * y[R] + y[G] * y[G] + y[B] * y[B]); | |||||
u[R] = y[1]; | |||||
u[G] = -y[0]; | |||||
u[B] = 0; | |||||
tmp = sqrt(u[R] * u[R] + u[G] * u[G] + u[B] * u[B]); | |||||
u[R] /= tmp; u[G] /= tmp; u[B] /= tmp; | |||||
v[R] = y[G] * u[B] - y[B] * u[G]; | |||||
v[G] = y[B] * u[R] - y[R] * u[B]; | |||||
v[B] = y[R] * u[G] - y[G] * u[R]; | |||||
tmp = sqrt(v[R] * v[R] + v[G] * v[G] + v[B] * v[B]); | |||||
v[R] /= tmp; v[G] /= tmp; v[B] /= tmp; | |||||
} | |||||
/* | |||||
* Compute the convex hull of a given palette. | |||||
*/ | |||||
static hull_t *compute_hull(int ncolors, double const *palette) | |||||
{ | |||||
hull_t *ret = malloc(sizeof(hull_t)); | |||||
double tmp; | |||||
int i, j; | |||||
debug("\n### NEW HULL ###\n\n"); | |||||
debug("Analysing %i colors\n", ncolors); | |||||
double pal[ncolors][3]; | |||||
for(i = 0; i < ncolors; i++) | |||||
{ | |||||
pal[i][R] = palette[i * 3]; | |||||
pal[i][G] = palette[i * 3 + 1]; | |||||
pal[i][B] = palette[i * 3 + 2]; | |||||
debug(" [%i] (%g,%g,%g)\n", i, pal[i][R], pal[i][G], pal[i][B]); | |||||
} | |||||
/* | |||||
* 1. Find the darkest and lightest colours | |||||
*/ | |||||
double *dark = NULL, *light = NULL; | |||||
double min = 1.0, max = 0.0; | |||||
for(i = 0; i < ncolors; i++) | |||||
{ | |||||
double p = BRIGHT(pal[i]); | |||||
if(p < min) | |||||
{ | |||||
dark = pal[i]; | |||||
min = p; | |||||
} | |||||
if(p > max) | |||||
{ | |||||
light = pal[i]; | |||||
max = p; | |||||
} | |||||
} | |||||
double gray[3]; | |||||
gray[R] = light[R] - dark[R]; | |||||
gray[G] = light[G] - dark[G]; | |||||
gray[B] = light[B] - dark[B]; | |||||
debug(" gray axis (%g,%g,%g) - (%g,%g,%g)\n", | |||||
dark[R], dark[G], dark[B], light[R], light[G], light[B]); | |||||
/* | |||||
* 3. Browse the grey axis and do stuff | |||||
*/ | |||||
int n; | |||||
for(n = 0; n <= STEPS; n++) | |||||
{ | |||||
double pts[ncolors * (ncolors - 1) / 2][5]; | |||||
double ptmp[5]; | |||||
#define SWAP(p1,p2) do { memcpy(ptmp, p1, sizeof(ptmp)); \ | |||||
memcpy(p1, p2, sizeof(ptmp)); \ | |||||
memcpy(p2, ptmp, sizeof(ptmp)); } while(0) | |||||
double t = n * 1.0 / STEPS; | |||||
int npts = 0; | |||||
debug("Slice %i/%i\n", n, STEPS); | |||||
double p0[3]; | |||||
p0[R] = dark[R] + t * gray[R]; | |||||
p0[G] = dark[G] + t * gray[G]; | |||||
p0[B] = dark[B] + t * gray[B]; | |||||
debug(" 3D gray (%g,%g,%g)\n", p0[R], p0[G], p0[B]); | |||||
/* | |||||
* 3.1. Find all edges that intersect the t.y + (u,v) plane | |||||
*/ | |||||
for(i = 0; i < ncolors; i++) | |||||
{ | |||||
double k1[3]; | |||||
k1[R] = pal[i][R] - p0[R]; | |||||
k1[G] = pal[i][G] - p0[G]; | |||||
k1[B] = pal[i][B] - p0[B]; | |||||
tmp = sqrt(k1[R] * k1[R] + k1[G] * k1[G] + k1[B] * k1[B]); | |||||
/* If k1.y > t.y.y, we don't want this point */ | |||||
double yk1 = y[R] * k1[R] + y[G] * k1[G] + y[B] * k1[B]; | |||||
if(yk1 > t * ylen * ylen + EPSILON) | |||||
continue; | |||||
for(j = 0; j < ncolors; j++) | |||||
{ | |||||
if(i == j) | |||||
continue; | |||||
double k2[3]; | |||||
k2[R] = pal[j][R] - p0[R]; | |||||
k2[G] = pal[j][G] - p0[G]; | |||||
k2[B] = pal[j][B] - p0[B]; | |||||
tmp = sqrt(k2[R] * k2[R] + k2[G] * k2[G] + k2[B] * k2[B]); | |||||
/* If k2.y < t.y.y, we don't want this point */ | |||||
double yk2 = y[R] * k2[R] + y[G] * k2[G] + y[B] * k2[B]; | |||||
if(yk2 < t * ylen * ylen - EPSILON) | |||||
continue; | |||||
if(yk2 < yk1) | |||||
continue; | |||||
double s = yk1 == yk2 ? | |||||
0.5 : (t * ylen * ylen - yk1) / (yk2 - yk1); | |||||
pts[npts][R] = p0[R] + k1[R] + s * (k2[R] - k1[R]); | |||||
pts[npts][G] = p0[G] + k1[G] + s * (k2[G] - k1[G]); | |||||
pts[npts][B] = p0[B] + k1[B] + s * (k2[B] - k1[B]); | |||||
npts++; | |||||
} | |||||
} | |||||
/* | |||||
* 3.2. Find the barycentre of these points' convex hull. We use | |||||
* the Graham Scan technique. | |||||
*/ | |||||
/* Make our problem a 2-D problem. */ | |||||
for(i = 0; i < npts; i++) | |||||
{ | |||||
pts[i][X] = (pts[i][R] - p0[R]) * u[R] | |||||
+ (pts[i][G] - p0[G]) * u[G] | |||||
+ (pts[i][B] - p0[B]) * u[B]; | |||||
pts[i][Y] = (pts[i][R] - p0[R]) * v[R] | |||||
+ (pts[i][G] - p0[G]) * v[G] | |||||
+ (pts[i][B] - p0[B]) * v[B]; | |||||
} | |||||
/* Find the leftmost point */ | |||||
int left = -1; | |||||
tmp = 10.; | |||||
for(i = 0; i < npts; i++) | |||||
if(pts[i][X] < tmp) | |||||
{ | |||||
left = i; | |||||
tmp = pts[i][X]; | |||||
} | |||||
SWAP(pts[0], pts[left]); | |||||
/* Sort the remaining points radially around pts[0]. Bubble sort | |||||
* is okay for small sizes, I don't care. */ | |||||
for(i = 1; i < npts; i++) | |||||
for(j = 1; j < npts - i; j++) | |||||
{ | |||||
double k1 = (pts[j][X] - pts[0][X]) | |||||
* (pts[j + 1][Y] - pts[0][Y]); | |||||
double k2 = (pts[j + 1][X] - pts[0][X]) | |||||
* (pts[j][Y] - pts[0][Y]); | |||||
if(k1 < k2 - EPSILON) | |||||
SWAP(pts[j], pts[j + 1]); | |||||
else if(k1 < k2 + EPSILON) | |||||
{ | |||||
/* Aligned! keep the farthest point */ | |||||
double ax = pts[j][X] - pts[0][X]; | |||||
double ay = pts[j][Y] - pts[0][Y]; | |||||
double bx = pts[j + 1][X] - pts[0][X]; | |||||
double by = pts[j + 1][Y] - pts[0][Y]; | |||||
if(ax * ax + ay * ay > bx * bx + by * by) | |||||
SWAP(pts[j], pts[j + 1]); | |||||
} | |||||
} | |||||
/* Remove points not in the convex hull */ | |||||
for(i = 2; i < npts; /* */) | |||||
{ | |||||
if(i < 2) | |||||
{ | |||||
i++; | |||||
continue; | |||||
} | |||||
double k1 = (pts[i - 1][X] - pts[i - 2][X]) | |||||
* (pts[i][Y] - pts[i - 2][Y]); | |||||
double k2 = (pts[i][X] - pts[i - 2][X]) | |||||
* (pts[i - 1][Y] - pts[i - 2][Y]); | |||||
if(k1 <= k2 + EPSILON) | |||||
{ | |||||
for(j = i - 1; j < npts - 1; j++) | |||||
SWAP(pts[j], pts[j + 1]); | |||||
npts--; | |||||
} | |||||
else | |||||
i++; | |||||
} | |||||
/* FIXME: check the last point */ | |||||
for(i = 0; i < npts; i++) | |||||
debug(" 2D pt[%i] (%g,%g)\n", i, pts[i][X], pts[i][Y]); | |||||
/* Compute the barycentre coordinates */ | |||||
double ctx = 0., cty = 0., weight = 0.; | |||||
for(i = 2; i < npts; i++) | |||||
{ | |||||
double abx = pts[i - 1][X] - pts[0][X]; | |||||
double aby = pts[i - 1][Y] - pts[0][Y]; | |||||
double acx = pts[i][X] - pts[0][X]; | |||||
double acy = pts[i][Y] - pts[0][Y]; | |||||
double sqarea = (abx * abx + aby * aby) * (acx * acx + acy * acy) | |||||
- (abx * acx + aby * acy) * (abx * acx + aby * acy); | |||||
if(sqarea <= 0.) | |||||
continue; | |||||
double area = sqrt(sqarea); | |||||
ctx += area * (abx + acx) / 3; | |||||
cty += area * (aby + acy) / 3; | |||||
weight += area; | |||||
} | |||||
if(weight > EPSILON) | |||||
{ | |||||
ctx = pts[0][X] + ctx / weight; | |||||
cty = pts[0][Y] + cty / weight; | |||||
} | |||||
else | |||||
{ | |||||
int right = -1; | |||||
tmp = -10.; | |||||
for(i = 0; i < npts; i++) | |||||
if(pts[i][X] > tmp) | |||||
{ | |||||
right = i; | |||||
tmp = pts[i][X]; | |||||
} | |||||
ctx = 0.5 * (pts[0][X] + pts[right][X]); | |||||
cty = 0.5 * (pts[0][Y] + pts[right][Y]); | |||||
} | |||||
debug(" 2D bary (%g,%g)\n", ctx, cty); | |||||
/* | |||||
* 3.3. Store the barycentre and convex hull information. | |||||
*/ | |||||
ret->bary[n][R] = p0[R] + ctx * u[R] + cty * v[R]; | |||||
ret->bary[n][G] = p0[G] + ctx * u[G] + cty * v[G]; | |||||
ret->bary[n][B] = p0[B] + ctx * u[B] + cty * v[B]; | |||||
for(i = 0; i < npts; i++) | |||||
{ | |||||
ret->pts[n][i][R] = pts[i][R]; | |||||
ret->pts[n][i][G] = pts[i][G]; | |||||
ret->pts[n][i][B] = pts[i][B]; | |||||
ret->pts[n][i][X] = pts[i][X] - ctx; | |||||
ret->pts[n][i][Y] = pts[i][Y] - cty; | |||||
ret->pts[n][i][A] = atan2(pts[i][Y] - cty, pts[i][X] - ctx); | |||||
debug(" 3D pt[%i] (%g,%g,%g) angle %g\n", | |||||
i, pts[i][R], pts[i][G], pts[i][B], ret->pts[n][i][A]); | |||||
} | |||||
ret->hullsize[n] = npts; | |||||
debug(" 3D bary (%g,%g,%g)\n", | |||||
ret->bary[n][R], ret->bary[n][G], ret->bary[n][B]); | |||||
} | |||||
return ret; | |||||
} | |||||
int main(int argc, char *argv[]) | int main(int argc, char *argv[]) | ||||
{ | { | ||||
static double const rgbpal[] = | |||||
{ | |||||
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, | |||||
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, | |||||
}; | |||||
static double const mypal[] = | static double const mypal[] = | ||||
{ | { | ||||
0.900, 0.001, 0.001, /* red */ | 0.900, 0.001, 0.001, /* red */ | ||||
@@ -343,142 +20,8 @@ int main(int argc, char *argv[]) | |||||
0.800, 0.400, 0.001, /* orange */ | 0.800, 0.400, 0.001, /* orange */ | ||||
}; | }; | ||||
int i, j; | |||||
init_uv(); | |||||
hull_t *rgbhull = compute_hull(8, rgbpal); | |||||
hull_t *myhull = compute_hull(6, mypal); | |||||
/* | |||||
* 4. Load image and change its palette. | |||||
*/ | |||||
debug("\n### PROCESSING IMAGE ###\n\n"); | |||||
pipi_image_t *src = pipi_load(argv[1]); | pipi_image_t *src = pipi_load(argv[1]); | ||||
pipi_pixels_t *srcp = pipi_getpixels(src, PIPI_PIXELS_RGBA_F); | |||||
float *srcdata = (float *)srcp->pixels; | |||||
int w = srcp->w, h = srcp->h; | |||||
pipi_image_t *dst = pipi_new(w, h); | |||||
pipi_pixels_t *dstp = pipi_getpixels(dst, PIPI_PIXELS_RGBA_F); | |||||
float *dstdata = (float *)dstp->pixels; | |||||
for(j = 0; j < h; j++) | |||||
for(i = 0; i < w; i++) | |||||
{ | |||||
double p[3]; | |||||
/* FIXME: Imlib fucks up the RGB order. */ | |||||
p[B] = srcdata[4 * (j * w + i)]; | |||||
p[G] = srcdata[4 * (j * w + i) + 1]; | |||||
p[R] = srcdata[4 * (j * w + i) + 2]; | |||||
debug("Pixel +%i+%i (%g,%g,%g)\n", i, j, p[R], p[G], p[B]); | |||||
int slice = (int)(BRIGHT(p) * STEPS + 0.5); | |||||
debug(" slice %i\n", slice); | |||||
/* Convert to 2D. The origin is the slice's barycentre. */ | |||||
double xp = (p[R] - rgbhull->bary[slice][R]) * u[R] | |||||
+ (p[G] - rgbhull->bary[slice][G]) * u[G] | |||||
+ (p[B] - rgbhull->bary[slice][B]) * u[B]; | |||||
double yp = (p[R] - rgbhull->bary[slice][R]) * v[R] | |||||
+ (p[G] - rgbhull->bary[slice][G]) * v[G] | |||||
+ (p[B] - rgbhull->bary[slice][B]) * v[B]; | |||||
debug(" 2D pt (%g,%g)\n", xp, yp); | |||||
/* 1. find the excentricity in RGB space. There is an easier | |||||
* way to do this, which is to find the intersection of our | |||||
* line with the RGB cube itself, but we'd lose the possibility | |||||
* of having an original colour space other than RGB. */ | |||||
/* First, find the relevant triangle. */ | |||||
int n, count = rgbhull->hullsize[slice]; | |||||
double angle = atan2(yp, xp); | |||||
for(n = 0; n < count; n++) | |||||
{ | |||||
double a1 = rgbhull->pts[slice][n][A]; | |||||
double a2 = rgbhull->pts[slice][(n + 1) % count][A]; | |||||
if(a1 > a2) | |||||
{ | |||||
if(angle >= a1) | |||||
a2 += 2 * M_PI; | |||||
else | |||||
a1 -= 2 * M_PI; | |||||
} | |||||
if(angle >= a1 && angle <= a2) | |||||
break; | |||||
} | |||||
/* Now compute the distance to the triangle's edge. If the edge | |||||
* intersection is M, then t is such as P = t.M (can be zero) */ | |||||
double xa = rgbhull->pts[slice][n % count][X]; | |||||
double ya = rgbhull->pts[slice][n % count][Y]; | |||||
double xb = rgbhull->pts[slice][(n + 1) % count][X]; | |||||
double yb = rgbhull->pts[slice][(n + 1) % count][Y]; | |||||
double t = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||||
if(t > 1.0) | |||||
t = 1.0; | |||||
debug(" best RGB %g (%g,%g) (%g,%g)\n", t, xa, ya, xb, yb); | |||||
/* 2. apply the excentricity in reduced space. */ | |||||
count = myhull->hullsize[slice]; | |||||
for(n = 0; n < count; n++) | |||||
{ | |||||
double a1 = myhull->pts[slice][n][A]; | |||||
double a2 = myhull->pts[slice][(n + 1) % count][A]; | |||||
if(a1 > a2) | |||||
{ | |||||
if(angle >= a1) | |||||
a2 += 2 * M_PI; | |||||
else | |||||
a1 -= 2 * M_PI; | |||||
} | |||||
if(angle >= a1 && angle <= a2) | |||||
break; | |||||
} | |||||
/* If the edge intersection is M', s is such as P = s.M'. We | |||||
* want P' = t.M' = t.P/s */ | |||||
xa = myhull->pts[slice][n % count][X]; | |||||
ya = myhull->pts[slice][n % count][Y]; | |||||
xb = myhull->pts[slice][(n + 1) % count][X]; | |||||
yb = myhull->pts[slice][(n + 1) % count][Y]; | |||||
double s = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||||
debug(" best custom %g (%g,%g) (%g,%g)\n", s, xa, ya, xb, yb); | |||||
if(s > 0) | |||||
{ | |||||
xp *= t / s; | |||||
yp *= t / s; | |||||
} | |||||
p[R] = myhull->bary[slice][R] + xp * u[R] + yp * v[R]; | |||||
p[G] = myhull->bary[slice][G] + xp * u[G] + yp * v[G]; | |||||
p[B] = myhull->bary[slice][B] + xp * u[B] + yp * v[B]; | |||||
/* Clipping should not be necessary, but the above code | |||||
* is unfortunately not perfect. */ | |||||
if(p[R] < 0.0) p[R] = 0.0; else if(p[R] > 1.0) p[R] = 1.0; | |||||
if(p[G] < 0.0) p[G] = 0.0; else if(p[G] > 1.0) p[G] = 1.0; | |||||
if(p[B] < 0.0) p[B] = 0.0; else if(p[B] > 1.0) p[B] = 1.0; | |||||
dstdata[4 * (j * w + i)] = p[B]; | |||||
dstdata[4 * (j * w + i) + 1] = p[G]; | |||||
dstdata[4 * (j * w + i) + 2] = p[R]; | |||||
} | |||||
free(rgbhull); | |||||
free(myhull); | |||||
pipi_image_t *dst = pipi_reduce(src, 6, mypal); | |||||
pipi_save(dst, argv[2]); | pipi_save(dst, argv[2]); | ||||
return 0; | return 0; | ||||
@@ -27,6 +27,7 @@ libpipi_la_SOURCES = \ | |||||
$(paint_sources) \ | $(paint_sources) \ | ||||
$(combine_sources) \ | $(combine_sources) \ | ||||
$(filter_sources) \ | $(filter_sources) \ | ||||
$(quantize_sources) \ | |||||
$(dither_sources) \ | $(dither_sources) \ | ||||
$(NULL) | $(NULL) | ||||
libpipi_la_CFLAGS = $(codec_cflags) | libpipi_la_CFLAGS = $(codec_cflags) | ||||
@@ -55,6 +56,9 @@ filter_sources = \ | |||||
filter/convolution.c filter/convolution_template.h \ | filter/convolution.c filter/convolution_template.h \ | ||||
filter/color.c | filter/color.c | ||||
quantize_sources = \ | |||||
quantize/reduce.c | |||||
dither_sources = \ | dither_sources = \ | ||||
dither/floydsteinberg.c \ | dither/floydsteinberg.c \ | ||||
dither/jajuni.c \ | dither/jajuni.c \ | ||||
@@ -131,6 +131,8 @@ extern pipi_image_t *pipi_tile(pipi_image_t *, int, int); | |||||
extern int pipi_flood_fill(pipi_image_t *, | extern int pipi_flood_fill(pipi_image_t *, | ||||
int, int, float, float, float, float); | int, int, float, float, float, float); | ||||
extern pipi_image_t *pipi_reduce(pipi_image_t *, int, double const *); | |||||
extern pipi_image_t *pipi_dither_floydsteinberg(pipi_image_t *, pipi_scan_t); | extern pipi_image_t *pipi_dither_floydsteinberg(pipi_image_t *, pipi_scan_t); | ||||
extern pipi_image_t *pipi_dither_jajuni(pipi_image_t *, pipi_scan_t); | extern pipi_image_t *pipi_dither_jajuni(pipi_image_t *, pipi_scan_t); | ||||
extern pipi_image_t *pipi_dither_ordered(pipi_image_t *, pipi_image_t *); | extern pipi_image_t *pipi_dither_ordered(pipi_image_t *, pipi_image_t *); | ||||
@@ -0,0 +1,492 @@ | |||||
/* | |||||
* libpipi Proper image processing implementation library | |||||
* Copyright (c) 2004-2008 Sam Hocevar <sam@zoy.org> | |||||
* All Rights Reserved | |||||
* | |||||
* $Id$ | |||||
* | |||||
* This library is free software. It comes without any warranty, to | |||||
* the extent permitted by applicable law. You can redistribute it | |||||
* and/or modify it under the terms of the Do What The Fuck You Want | |||||
* To Public License, Version 2, as published by Sam Hocevar. See | |||||
* http://sam.zoy.org/wtfpl/COPYING for more details. | |||||
*/ | |||||
/* | |||||
* reduce.c: palette reduction routines | |||||
*/ | |||||
#include "config.h" | |||||
#include "common.h" | |||||
#include <stdio.h> | |||||
#include <stdlib.h> | |||||
#include <string.h> | |||||
#include <math.h> | |||||
#include <pipi.h> | |||||
#define R 0 | |||||
#define G 1 | |||||
#define B 2 | |||||
#define X 3 | |||||
#define Y 4 | |||||
#define A 5 | |||||
//#define debug printf | |||||
#define debug(...) /* */ | |||||
#define BRIGHT(x) (0.299*(x)[0] + 0.587*(x)[1] + 0.114*(x)[2]) | |||||
#define MAXCOLORS 16 | |||||
#define STEPS 1024 | |||||
#define EPSILON (0.000001) | |||||
typedef struct | |||||
{ | |||||
double pts[STEPS + 1][MAXCOLORS * (MAXCOLORS - 1) / 2][6]; | |||||
int hullsize[STEPS + 1]; | |||||
double bary[STEPS + 1][3]; | |||||
} | |||||
hull_t; | |||||
static double const y[3] = { .299, .587, .114 }; | |||||
static double u[3], v[3]; | |||||
static int ylen; | |||||
/* | |||||
* Find two base vectors for the chrominance planes. | |||||
*/ | |||||
static void init_uv(void) | |||||
{ | |||||
double tmp; | |||||
ylen = sqrt(y[R] * y[R] + y[G] * y[G] + y[B] * y[B]); | |||||
u[R] = y[1]; | |||||
u[G] = -y[0]; | |||||
u[B] = 0; | |||||
tmp = sqrt(u[R] * u[R] + u[G] * u[G] + u[B] * u[B]); | |||||
u[R] /= tmp; u[G] /= tmp; u[B] /= tmp; | |||||
v[R] = y[G] * u[B] - y[B] * u[G]; | |||||
v[G] = y[B] * u[R] - y[R] * u[B]; | |||||
v[B] = y[R] * u[G] - y[G] * u[R]; | |||||
tmp = sqrt(v[R] * v[R] + v[G] * v[G] + v[B] * v[B]); | |||||
v[R] /= tmp; v[G] /= tmp; v[B] /= tmp; | |||||
} | |||||
/* | |||||
* Compute the convex hull of a given palette. | |||||
*/ | |||||
static hull_t *compute_hull(int ncolors, double const *palette) | |||||
{ | |||||
hull_t *ret = malloc(sizeof(hull_t)); | |||||
double tmp; | |||||
int i, j; | |||||
debug("\n### NEW HULL ###\n\n"); | |||||
debug("Analysing %i colors\n", ncolors); | |||||
double pal[ncolors][3]; | |||||
for(i = 0; i < ncolors; i++) | |||||
{ | |||||
pal[i][R] = palette[i * 3]; | |||||
pal[i][G] = palette[i * 3 + 1]; | |||||
pal[i][B] = palette[i * 3 + 2]; | |||||
debug(" [%i] (%g,%g,%g)\n", i, pal[i][R], pal[i][G], pal[i][B]); | |||||
} | |||||
/* | |||||
* 1. Find the darkest and lightest colours | |||||
*/ | |||||
double *dark = NULL, *light = NULL; | |||||
double min = 1.0, max = 0.0; | |||||
for(i = 0; i < ncolors; i++) | |||||
{ | |||||
double p = BRIGHT(pal[i]); | |||||
if(p < min) | |||||
{ | |||||
dark = pal[i]; | |||||
min = p; | |||||
} | |||||
if(p > max) | |||||
{ | |||||
light = pal[i]; | |||||
max = p; | |||||
} | |||||
} | |||||
double gray[3]; | |||||
gray[R] = light[R] - dark[R]; | |||||
gray[G] = light[G] - dark[G]; | |||||
gray[B] = light[B] - dark[B]; | |||||
debug(" gray axis (%g,%g,%g) - (%g,%g,%g)\n", | |||||
dark[R], dark[G], dark[B], light[R], light[G], light[B]); | |||||
/* | |||||
* 3. Browse the grey axis and do stuff | |||||
*/ | |||||
int n; | |||||
for(n = 0; n <= STEPS; n++) | |||||
{ | |||||
double pts[ncolors * (ncolors - 1) / 2][5]; | |||||
double ptmp[5]; | |||||
#define SWAP(p1,p2) do { memcpy(ptmp, p1, sizeof(ptmp)); \ | |||||
memcpy(p1, p2, sizeof(ptmp)); \ | |||||
memcpy(p2, ptmp, sizeof(ptmp)); } while(0) | |||||
double t = n * 1.0 / STEPS; | |||||
int npts = 0; | |||||
debug("Slice %i/%i\n", n, STEPS); | |||||
double p0[3]; | |||||
p0[R] = dark[R] + t * gray[R]; | |||||
p0[G] = dark[G] + t * gray[G]; | |||||
p0[B] = dark[B] + t * gray[B]; | |||||
debug(" 3D gray (%g,%g,%g)\n", p0[R], p0[G], p0[B]); | |||||
/* | |||||
* 3.1. Find all edges that intersect the t.y + (u,v) plane | |||||
*/ | |||||
for(i = 0; i < ncolors; i++) | |||||
{ | |||||
double k1[3]; | |||||
k1[R] = pal[i][R] - p0[R]; | |||||
k1[G] = pal[i][G] - p0[G]; | |||||
k1[B] = pal[i][B] - p0[B]; | |||||
tmp = sqrt(k1[R] * k1[R] + k1[G] * k1[G] + k1[B] * k1[B]); | |||||
/* If k1.y > t.y.y, we don't want this point */ | |||||
double yk1 = y[R] * k1[R] + y[G] * k1[G] + y[B] * k1[B]; | |||||
if(yk1 > t * ylen * ylen + EPSILON) | |||||
continue; | |||||
for(j = 0; j < ncolors; j++) | |||||
{ | |||||
if(i == j) | |||||
continue; | |||||
double k2[3]; | |||||
k2[R] = pal[j][R] - p0[R]; | |||||
k2[G] = pal[j][G] - p0[G]; | |||||
k2[B] = pal[j][B] - p0[B]; | |||||
tmp = sqrt(k2[R] * k2[R] + k2[G] * k2[G] + k2[B] * k2[B]); | |||||
/* If k2.y < t.y.y, we don't want this point */ | |||||
double yk2 = y[R] * k2[R] + y[G] * k2[G] + y[B] * k2[B]; | |||||
if(yk2 < t * ylen * ylen - EPSILON) | |||||
continue; | |||||
if(yk2 < yk1) | |||||
continue; | |||||
double s = yk1 == yk2 ? | |||||
0.5 : (t * ylen * ylen - yk1) / (yk2 - yk1); | |||||
pts[npts][R] = p0[R] + k1[R] + s * (k2[R] - k1[R]); | |||||
pts[npts][G] = p0[G] + k1[G] + s * (k2[G] - k1[G]); | |||||
pts[npts][B] = p0[B] + k1[B] + s * (k2[B] - k1[B]); | |||||
npts++; | |||||
} | |||||
} | |||||
/* | |||||
* 3.2. Find the barycentre of these points' convex hull. We use | |||||
* the Graham Scan technique. | |||||
*/ | |||||
/* Make our problem a 2-D problem. */ | |||||
for(i = 0; i < npts; i++) | |||||
{ | |||||
pts[i][X] = (pts[i][R] - p0[R]) * u[R] | |||||
+ (pts[i][G] - p0[G]) * u[G] | |||||
+ (pts[i][B] - p0[B]) * u[B]; | |||||
pts[i][Y] = (pts[i][R] - p0[R]) * v[R] | |||||
+ (pts[i][G] - p0[G]) * v[G] | |||||
+ (pts[i][B] - p0[B]) * v[B]; | |||||
} | |||||
/* Find the leftmost point */ | |||||
int left = -1; | |||||
tmp = 10.; | |||||
for(i = 0; i < npts; i++) | |||||
if(pts[i][X] < tmp) | |||||
{ | |||||
left = i; | |||||
tmp = pts[i][X]; | |||||
} | |||||
SWAP(pts[0], pts[left]); | |||||
/* Sort the remaining points radially around pts[0]. Bubble sort | |||||
* is okay for small sizes, I don't care. */ | |||||
for(i = 1; i < npts; i++) | |||||
for(j = 1; j < npts - i; j++) | |||||
{ | |||||
double k1 = (pts[j][X] - pts[0][X]) | |||||
* (pts[j + 1][Y] - pts[0][Y]); | |||||
double k2 = (pts[j + 1][X] - pts[0][X]) | |||||
* (pts[j][Y] - pts[0][Y]); | |||||
if(k1 < k2 - EPSILON) | |||||
SWAP(pts[j], pts[j + 1]); | |||||
else if(k1 < k2 + EPSILON) | |||||
{ | |||||
/* Aligned! keep the farthest point */ | |||||
double ax = pts[j][X] - pts[0][X]; | |||||
double ay = pts[j][Y] - pts[0][Y]; | |||||
double bx = pts[j + 1][X] - pts[0][X]; | |||||
double by = pts[j + 1][Y] - pts[0][Y]; | |||||
if(ax * ax + ay * ay > bx * bx + by * by) | |||||
SWAP(pts[j], pts[j + 1]); | |||||
} | |||||
} | |||||
/* Remove points not in the convex hull */ | |||||
for(i = 2; i < npts; /* */) | |||||
{ | |||||
if(i < 2) | |||||
{ | |||||
i++; | |||||
continue; | |||||
} | |||||
double k1 = (pts[i - 1][X] - pts[i - 2][X]) | |||||
* (pts[i][Y] - pts[i - 2][Y]); | |||||
double k2 = (pts[i][X] - pts[i - 2][X]) | |||||
* (pts[i - 1][Y] - pts[i - 2][Y]); | |||||
if(k1 <= k2 + EPSILON) | |||||
{ | |||||
for(j = i - 1; j < npts - 1; j++) | |||||
SWAP(pts[j], pts[j + 1]); | |||||
npts--; | |||||
} | |||||
else | |||||
i++; | |||||
} | |||||
/* FIXME: check the last point */ | |||||
for(i = 0; i < npts; i++) | |||||
debug(" 2D pt[%i] (%g,%g)\n", i, pts[i][X], pts[i][Y]); | |||||
/* Compute the barycentre coordinates */ | |||||
double ctx = 0., cty = 0., weight = 0.; | |||||
for(i = 2; i < npts; i++) | |||||
{ | |||||
double abx = pts[i - 1][X] - pts[0][X]; | |||||
double aby = pts[i - 1][Y] - pts[0][Y]; | |||||
double acx = pts[i][X] - pts[0][X]; | |||||
double acy = pts[i][Y] - pts[0][Y]; | |||||
double sqarea = (abx * abx + aby * aby) * (acx * acx + acy * acy) | |||||
- (abx * acx + aby * acy) * (abx * acx + aby * acy); | |||||
if(sqarea <= 0.) | |||||
continue; | |||||
double area = sqrt(sqarea); | |||||
ctx += area * (abx + acx) / 3; | |||||
cty += area * (aby + acy) / 3; | |||||
weight += area; | |||||
} | |||||
if(weight > EPSILON) | |||||
{ | |||||
ctx = pts[0][X] + ctx / weight; | |||||
cty = pts[0][Y] + cty / weight; | |||||
} | |||||
else | |||||
{ | |||||
int right = -1; | |||||
tmp = -10.; | |||||
for(i = 0; i < npts; i++) | |||||
if(pts[i][X] > tmp) | |||||
{ | |||||
right = i; | |||||
tmp = pts[i][X]; | |||||
} | |||||
ctx = 0.5 * (pts[0][X] + pts[right][X]); | |||||
cty = 0.5 * (pts[0][Y] + pts[right][Y]); | |||||
} | |||||
debug(" 2D bary (%g,%g)\n", ctx, cty); | |||||
/* | |||||
* 3.3. Store the barycentre and convex hull information. | |||||
*/ | |||||
ret->bary[n][R] = p0[R] + ctx * u[R] + cty * v[R]; | |||||
ret->bary[n][G] = p0[G] + ctx * u[G] + cty * v[G]; | |||||
ret->bary[n][B] = p0[B] + ctx * u[B] + cty * v[B]; | |||||
for(i = 0; i < npts; i++) | |||||
{ | |||||
ret->pts[n][i][R] = pts[i][R]; | |||||
ret->pts[n][i][G] = pts[i][G]; | |||||
ret->pts[n][i][B] = pts[i][B]; | |||||
ret->pts[n][i][X] = pts[i][X] - ctx; | |||||
ret->pts[n][i][Y] = pts[i][Y] - cty; | |||||
ret->pts[n][i][A] = atan2(pts[i][Y] - cty, pts[i][X] - ctx); | |||||
debug(" 3D pt[%i] (%g,%g,%g) angle %g\n", | |||||
i, pts[i][R], pts[i][G], pts[i][B], ret->pts[n][i][A]); | |||||
} | |||||
ret->hullsize[n] = npts; | |||||
debug(" 3D bary (%g,%g,%g)\n", | |||||
ret->bary[n][R], ret->bary[n][G], ret->bary[n][B]); | |||||
} | |||||
return ret; | |||||
} | |||||
pipi_image_t *pipi_reduce(pipi_image_t *src, | |||||
int ncolors, double const *palette) | |||||
{ | |||||
static double const rgbpal[] = | |||||
{ | |||||
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, | |||||
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, | |||||
}; | |||||
int i, j; | |||||
init_uv(); | |||||
hull_t *rgbhull = compute_hull(8, rgbpal); | |||||
hull_t *myhull = compute_hull(ncolors, palette); | |||||
/* | |||||
* 4. Load image and change its palette. | |||||
*/ | |||||
debug("\n### PROCESSING IMAGE ###\n\n"); | |||||
pipi_pixels_t *srcp = pipi_getpixels(src, PIPI_PIXELS_RGBA_F); | |||||
float *srcdata = (float *)srcp->pixels; | |||||
int w = srcp->w, h = srcp->h; | |||||
pipi_image_t *dst = pipi_new(w, h); | |||||
pipi_pixels_t *dstp = pipi_getpixels(dst, PIPI_PIXELS_RGBA_F); | |||||
float *dstdata = (float *)dstp->pixels; | |||||
for(j = 0; j < h; j++) | |||||
for(i = 0; i < w; i++) | |||||
{ | |||||
double p[3]; | |||||
/* FIXME: Imlib fucks up the RGB order. */ | |||||
p[B] = srcdata[4 * (j * w + i)]; | |||||
p[G] = srcdata[4 * (j * w + i) + 1]; | |||||
p[R] = srcdata[4 * (j * w + i) + 2]; | |||||
debug("Pixel +%i+%i (%g,%g,%g)\n", i, j, p[R], p[G], p[B]); | |||||
int slice = (int)(BRIGHT(p) * STEPS + 0.5); | |||||
debug(" slice %i\n", slice); | |||||
/* Convert to 2D. The origin is the slice's barycentre. */ | |||||
double xp = (p[R] - rgbhull->bary[slice][R]) * u[R] | |||||
+ (p[G] - rgbhull->bary[slice][G]) * u[G] | |||||
+ (p[B] - rgbhull->bary[slice][B]) * u[B]; | |||||
double yp = (p[R] - rgbhull->bary[slice][R]) * v[R] | |||||
+ (p[G] - rgbhull->bary[slice][G]) * v[G] | |||||
+ (p[B] - rgbhull->bary[slice][B]) * v[B]; | |||||
debug(" 2D pt (%g,%g)\n", xp, yp); | |||||
/* 1. find the excentricity in RGB space. There is an easier | |||||
* way to do this, which is to find the intersection of our | |||||
* line with the RGB cube itself, but we'd lose the possibility | |||||
* of having an original colour space other than RGB. */ | |||||
/* First, find the relevant triangle. */ | |||||
int n, count = rgbhull->hullsize[slice]; | |||||
double angle = atan2(yp, xp); | |||||
for(n = 0; n < count; n++) | |||||
{ | |||||
double a1 = rgbhull->pts[slice][n][A]; | |||||
double a2 = rgbhull->pts[slice][(n + 1) % count][A]; | |||||
if(a1 > a2) | |||||
{ | |||||
if(angle >= a1) | |||||
a2 += 2 * M_PI; | |||||
else | |||||
a1 -= 2 * M_PI; | |||||
} | |||||
if(angle >= a1 && angle <= a2) | |||||
break; | |||||
} | |||||
/* Now compute the distance to the triangle's edge. If the edge | |||||
* intersection is M, then t is such as P = t.M (can be zero) */ | |||||
double xa = rgbhull->pts[slice][n % count][X]; | |||||
double ya = rgbhull->pts[slice][n % count][Y]; | |||||
double xb = rgbhull->pts[slice][(n + 1) % count][X]; | |||||
double yb = rgbhull->pts[slice][(n + 1) % count][Y]; | |||||
double t = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||||
if(t > 1.0) | |||||
t = 1.0; | |||||
debug(" best RGB %g (%g,%g) (%g,%g)\n", t, xa, ya, xb, yb); | |||||
/* 2. apply the excentricity in reduced space. */ | |||||
count = myhull->hullsize[slice]; | |||||
for(n = 0; n < count; n++) | |||||
{ | |||||
double a1 = myhull->pts[slice][n][A]; | |||||
double a2 = myhull->pts[slice][(n + 1) % count][A]; | |||||
if(a1 > a2) | |||||
{ | |||||
if(angle >= a1) | |||||
a2 += 2 * M_PI; | |||||
else | |||||
a1 -= 2 * M_PI; | |||||
} | |||||
if(angle >= a1 && angle <= a2) | |||||
break; | |||||
} | |||||
/* If the edge intersection is M', s is such as P = s.M'. We | |||||
* want P' = t.M' = t.P/s */ | |||||
xa = myhull->pts[slice][n % count][X]; | |||||
ya = myhull->pts[slice][n % count][Y]; | |||||
xb = myhull->pts[slice][(n + 1) % count][X]; | |||||
yb = myhull->pts[slice][(n + 1) % count][Y]; | |||||
double s = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||||
debug(" best custom %g (%g,%g) (%g,%g)\n", s, xa, ya, xb, yb); | |||||
if(s > 0) | |||||
{ | |||||
xp *= t / s; | |||||
yp *= t / s; | |||||
} | |||||
p[R] = myhull->bary[slice][R] + xp * u[R] + yp * v[R]; | |||||
p[G] = myhull->bary[slice][G] + xp * u[G] + yp * v[G]; | |||||
p[B] = myhull->bary[slice][B] + xp * u[B] + yp * v[B]; | |||||
/* Clipping should not be necessary, but the above code | |||||
* is unfortunately not perfect. */ | |||||
if(p[R] < 0.0) p[R] = 0.0; else if(p[R] > 1.0) p[R] = 1.0; | |||||
if(p[G] < 0.0) p[G] = 0.0; else if(p[G] > 1.0) p[G] = 1.0; | |||||
if(p[B] < 0.0) p[B] = 0.0; else if(p[B] > 1.0) p[B] = 1.0; | |||||
dstdata[4 * (j * w + i)] = p[B]; | |||||
dstdata[4 * (j * w + i) + 1] = p[G]; | |||||
dstdata[4 * (j * w + i) + 2] = p[R]; | |||||
} | |||||
free(rgbhull); | |||||
free(myhull); | |||||
return dst; | |||||
} | |||||