#include "config.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <CGAL/Exact_predicates_inexact_constructions_kernel.h> #include <CGAL/Delaunay_triangulation_2.h> #include <CGAL/natural_neighbor_coordinates_2.h> #include <pipi.h> /* * User-definable settings. */ /* The maximum message length */ #define MAX_MSG_LEN 140 /* The number of characters at disposal */ //#define NUM_CHARACTERS 0x7fffffff // The sky's the limit //#define NUM_CHARACTERS 1111998 // Full valid Unicode set //#define NUM_CHARACTERS 100507 // Full graphic Unicode #define NUM_CHARACTERS 32768 // Chinese characters //#define NUM_CHARACTERS 127 // ASCII /* The maximum image size we want to support */ #define MAX_W 4000 #define MAX_H 4000 /* How does the algorithm work: one point per cell, or two */ #define POINTS_PER_CELL 2 /* The range value for point parameters: X Y, red/green/blue, "strength" * Tested values (on Mona Lisa) are: * 16 16 5 5 5 2 -> 0.06511725914 * 16 16 6 7 6 1 -> 0.05731491348 * * 16 16 7 6 6 1 -> 0.06450513783 * 14 14 7 7 6 1 -> 0.0637207893 * 19 19 6 6 5 1 -> 0.06801999094 */ static unsigned int RANGE_X = 16; static unsigned int RANGE_Y = 16; static unsigned int RANGE_R = 6; static unsigned int RANGE_G = 6; static unsigned int RANGE_B = 6; static unsigned int RANGE_S = 1; /* * These values are computed at runtime */ static float TOTAL_BITS; static float HEADER_BITS; static float DATA_BITS; static float POINT_BITS; static unsigned int TOTAL_CELLS; #define RANGE_SY (RANGE_S*RANGE_Y) #define RANGE_SYX (RANGE_S*RANGE_Y*RANGE_X) #define RANGE_SYXR (RANGE_S*RANGE_Y*RANGE_X*RANGE_R) #define RANGE_SYXRG (RANGE_S*RANGE_Y*RANGE_X*RANGE_R*RANGE_G) #define RANGE_SYXRGB (RANGE_S*RANGE_Y*RANGE_X*RANGE_R*RANGE_G*RANGE_B) struct K : CGAL::Exact_predicates_inexact_constructions_kernel {}; typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation; typedef std::vector<std::pair<K::Point_2, K::FT> > Point_coordinate_vector; /* Global aspect ratio */ static unsigned int dw, dh; /* Global point encoding */ static uint32_t points[1024]; static int npoints = 0; /* Global triangulation */ static Delaunay_triangulation dt; static unsigned int det_rand(unsigned int mod) { static unsigned long next = 1; next = next * 1103515245 + 12345; return ((unsigned)(next / 65536) % 32768) % mod; } static inline int range2int(float val, int range) { int ret = (int)(val * ((float)range - 0.0001)); return ret < 0 ? 0 : ret > range - 1 ? range - 1 : ret; } static inline float int2midrange(int val, int range) { return (float)(1 + 2 * val) / (float)(2 * range); } static inline float int2fullrange(int val, int range) { return range > 1 ? (float)val / (float)(range - 1) : 0.0; } static inline void set_point(int index, float x, float y, float r, float g, float b, float s) { int dx = (index / POINTS_PER_CELL) % dw; int dy = (index / POINTS_PER_CELL) / dw; float fx = (x - dx * RANGE_X) / RANGE_X; float fy = (y - dy * RANGE_Y) / RANGE_Y; int is = range2int(s, RANGE_S); int ix = range2int(fx, RANGE_X); int iy = range2int(fy, RANGE_Y); int ir = range2int(r, RANGE_R); int ig = range2int(g, RANGE_G); int ib = range2int(b, RANGE_B); points[index] = is + RANGE_S * (iy + RANGE_Y * (ix + RANGE_X * (ib + RANGE_B * (ig + (RANGE_R * ir))))); } static inline void get_point(int index, float *x, float *y, float *r, float *g, float *b, float *s) { uint32_t pt = points[index]; unsigned int dx = (index / POINTS_PER_CELL) % dw; unsigned int dy = (index / POINTS_PER_CELL) / dw; *s = int2fullrange(pt % RANGE_S, RANGE_S); pt /= RANGE_S; float fy = int2midrange(pt % RANGE_Y, RANGE_Y); pt /= RANGE_Y; float fx = int2midrange(pt % RANGE_X, RANGE_X); pt /= RANGE_X; *x = (fx + dx) * RANGE_X; *y = (fy + dy) * RANGE_Y; *b = int2midrange(pt % RANGE_R, RANGE_R); pt /= RANGE_R; *g = int2midrange(pt % RANGE_G, RANGE_G); pt /= RANGE_G; *r = int2midrange(pt % RANGE_B, RANGE_B); pt /= RANGE_B; } static inline float clip(float x, int modulo) { float mul = (float)modulo + 0.9999; int round = (int)(x * mul); return (float)round / (float)modulo; } static void add_point(float x, float y, float r, float g, float b, float s) { set_point(npoints, x, y, r, g, b, s); npoints++; } static void add_random_point() { points[npoints] = det_rand(RANGE_SYXRGB); npoints++; } #define NB_OPS 20 static uint8_t rand_op(void) { uint8_t x = det_rand(NB_OPS); /* Randomly ignore statistically less efficient ops */ if(x == 0) return rand_op(); if(x == 1 && (RANGE_S == 1 || det_rand(2))) return rand_op(); if(x <= 5 && det_rand(2)) return rand_op(); //if((x < 10 || x > 15) && !det_rand(4)) /* Favour colour changes */ // return rand_op(); return x; } static uint32_t apply_op(uint8_t op, uint32_t val) { uint32_t rem, ext; switch(op) { case 0: /* Flip strength value */ case 1: /* Statistics show that this helps often, but does not reduce * the error significantly. */ return val ^ 1; case 2: /* Move up; if impossible, down */ rem = val % RANGE_S; ext = (val / RANGE_S) % RANGE_Y; ext = ext > 0 ? ext - 1 : ext + 1; return (val / RANGE_SY * RANGE_Y + ext) * RANGE_S + rem; case 3: /* Move down; if impossible, up */ rem = val % RANGE_S; ext = (val / RANGE_S) % RANGE_Y; ext = ext < RANGE_Y - 1 ? ext + 1 : ext - 1; return (val / RANGE_SY * RANGE_Y + ext) * RANGE_S + rem; case 4: /* Move left; if impossible, right */ rem = val % RANGE_SY; ext = (val / RANGE_SY) % RANGE_X; ext = ext > 0 ? ext - 1 : ext + 1; return (val / RANGE_SYX * RANGE_X + ext) * RANGE_SY + rem; case 5: /* Move left; if impossible, right */ rem = val % RANGE_SY; ext = (val / RANGE_SY) % RANGE_X; ext = ext < RANGE_X - 1 ? ext + 1 : ext - 1; return (val / RANGE_SYX * RANGE_X + ext) * RANGE_SY + rem; case 6: /* Corner 1 */ return apply_op(2, apply_op(4, val)); case 7: /* Corner 2 */ return apply_op(2, apply_op(5, val)); case 8: /* Corner 3 */ return apply_op(3, apply_op(5, val)); case 9: /* Corner 4 */ return apply_op(3, apply_op(4, val)); case 16: /* Double up */ return apply_op(2, apply_op(2, val)); case 17: /* Double down */ return apply_op(3, apply_op(3, val)); case 18: /* Double left */ return apply_op(4, apply_op(4, val)); case 19: /* Double right */ return apply_op(5, apply_op(5, val)); case 10: /* R-- (or R++) */ rem = val % RANGE_SYX; ext = (val / RANGE_SYX) % RANGE_R; ext = ext > 0 ? ext - 1 : ext + 1; return (val / RANGE_SYXR * RANGE_R + ext) * RANGE_SYX + rem; case 11: /* R++ (or R--) */ rem = val % RANGE_SYX; ext = (val / RANGE_SYX) % RANGE_R; ext = ext < RANGE_R - 1 ? ext + 1 : ext - 1; return (val / RANGE_SYXR * RANGE_R + ext) * RANGE_SYX + rem; case 12: /* G-- (or G++) */ rem = val % RANGE_SYXR; ext = (val / RANGE_SYXR) % RANGE_G; ext = ext > 0 ? ext - 1 : ext + 1; return (val / RANGE_SYXRG * RANGE_G + ext) * RANGE_SYXR + rem; case 13: /* G++ (or G--) */ rem = val % RANGE_SYXR; ext = (val / RANGE_SYXR) % RANGE_G; ext = ext < RANGE_G - 1 ? ext + 1 : ext - 1; return (val / RANGE_SYXRG * RANGE_G + ext) * RANGE_SYXR + rem; case 14: /* B-- (or B++) */ rem = val % RANGE_SYXRG; ext = (val / RANGE_SYXRG) % RANGE_B; ext = ext > 0 ? ext - 1 : ext + 1; return ext * RANGE_SYXRG + rem; case 15: /* B++ (or B--) */ rem = val % RANGE_SYXRG; ext = (val / RANGE_SYXRG) % RANGE_B; ext = ext < RANGE_B - 1 ? ext + 1 : ext - 1; return ext * RANGE_SYXRG + rem; #if 0 case 15: /* Brightness-- */ return apply_op(9, apply_op(11, apply_op(13, val))); case 16: /* Brightness++ */ return apply_op(10, apply_op(12, apply_op(14, val))); case 17: /* RG-- */ return apply_op(9, apply_op(11, val)); case 18: /* RG++ */ return apply_op(10, apply_op(12, val)); case 19: /* GB-- */ return apply_op(11, apply_op(13, val)); case 20: /* GB++ */ return apply_op(12, apply_op(14, val)); case 21: /* RB-- */ return apply_op(9, apply_op(13, val)); case 22: /* RB++ */ return apply_op(10, apply_op(14, val)); #endif default: return val; } } static void render(pipi_image_t *dst, int rx, int ry, int rw, int rh) { uint8_t lookup[TOTAL_CELLS * RANGE_X * RANGE_Y]; pipi_pixels_t *p = pipi_get_pixels(dst, PIPI_PIXELS_RGBA_F32); float *data = (float *)p->pixels; int i, x, y; memset(lookup, 0, sizeof(lookup)); dt.clear(); for(i = 0; i < npoints; i++) { float fx, fy, fr, fg, fb, fs; get_point(i, &fx, &fy, &fr, &fg, &fb, &fs); lookup[(int)fx + dw * RANGE_X * (int)fy] = i; /* Keep link to point */ dt.insert(K::Point_2(fx, fy)); } /* Add fake points to close the triangulation */ dt.insert(K::Point_2(-p->w, -p->h)); dt.insert(K::Point_2(2 * p->w, -p->h)); dt.insert(K::Point_2(-p->w, 2 * p->h)); dt.insert(K::Point_2(2 * p->w, 2 * p->h)); for(y = ry; y < ry + rh; y++) { for(x = rx; x < rx + rw; x++) { K::Point_2 m(x, y); Point_coordinate_vector coords; CGAL::Triple< std::back_insert_iterator<Point_coordinate_vector>, K::FT, bool> result = CGAL::natural_neighbor_coordinates_2(dt, m, std::back_inserter(coords)); float r = 0.0f, g = 0.0f, b = 0.0f, norm = 0.0f; Point_coordinate_vector::iterator it; for(it = coords.begin(); it != coords.end(); ++it) { float fx, fy, fr, fg, fb, fs; fx = (*it).first.x(); fy = (*it).first.y(); if(fx < 0 || fy < 0 || fx > p->w - 1 || fy > p->h - 1) continue; int index = lookup[(int)fx + dw * RANGE_X * (int)fy]; get_point(index, &fx, &fy, &fr, &fg, &fb, &fs); //float k = pow((*it).second * (1.0 + fs), 1.2); float k = (*it).second * (1.00f + fs); //float k = (*it).second * (0.60f + fs); //float k = pow((*it).second, (1.0f + fs)); r += k * fr; g += k * fg; b += k * fb; norm += k; } data[4 * (x + y * p->w) + 0] = r / norm; data[4 * (x + y * p->w) + 1] = g / norm; data[4 * (x + y * p->w) + 2] = b / norm; data[4 * (x + y * p->w) + 3] = 0.0; } } pipi_release_pixels(dst, p); } static void analyse(pipi_image_t *src) { pipi_pixels_t *p = pipi_get_pixels(src, PIPI_PIXELS_RGBA_F32); float *data = (float *)p->pixels; for(unsigned int dy = 0; dy < dh; dy++) for(unsigned int dx = 0; dx < dw; dx++) { float min = 1.1f, max = -0.1f; float total = 0.0; int xmin = 0, xmax = 0, ymin = 0, ymax = 0; int npixels = 0; for(unsigned int iy = RANGE_Y * dy; iy < RANGE_Y * (dy + 1); iy++) for(unsigned int ix = RANGE_X * dx; ix < RANGE_X * (dx + 1); ix++) { float lum = 0.0f; lum += data[4 * (ix + iy * p->w) + 0]; lum += data[4 * (ix + iy * p->w) + 1]; lum += data[4 * (ix + iy * p->w) + 2]; if(lum < min) { min = lum; xmin = ix; ymin = iy; } if(lum > max) { max = lum; xmax = ix; ymax = iy; } total += lum; npixels++; } total /= npixels; float wmin, wmax; if(total < min + (max - min) / 4) wmin = 1.0, wmax = 0.0; else if(total < min + (max - min) / 4 * 3) wmin = 0.0, wmax = 0.0; else wmin = 0.0, wmax = 1.0; #if 0 add_random_point(); add_random_point(); #else #if POINTS_PER_CELL == 1 if(total < min + (max - min) / 2) { #endif add_point(xmin, ymin, data[4 * (xmin + ymin * p->w) + 0], data[4 * (xmin + ymin * p->w) + 1], data[4 * (xmin + ymin * p->w) + 2], wmin); #if POINTS_PER_CELL == 1 } else { #endif add_point(xmax, ymax, data[4 * (xmax + ymax * p->w) + 0], data[4 * (xmax + ymax * p->w) + 1], data[4 * (xmax + ymax * p->w) + 2], wmax); #if POINTS_PER_CELL == 1 } #endif #endif } } int main(int argc, char *argv[]) { int opstats[2 * NB_OPS]; pipi_image_t *src, *tmp, *dst; double error = 1.0; int width, height, ret = 0; /* Compute bit allocation */ fprintf(stderr, "Available characters: %i\n", NUM_CHARACTERS); fprintf(stderr, "Maximum message size: %i\n", MAX_MSG_LEN); TOTAL_BITS = MAX_MSG_LEN * logf(NUM_CHARACTERS) / logf(2); fprintf(stderr, "Available bits: %f\n", TOTAL_BITS); fprintf(stderr, "Maximum image resolution: %ix%i\n", MAX_W, MAX_H); HEADER_BITS = logf(MAX_W * MAX_H) / logf(2); fprintf(stderr, "Header bits: %f\n", HEADER_BITS); DATA_BITS = TOTAL_BITS - HEADER_BITS; fprintf(stderr, "Bits available for data: %f\n", DATA_BITS); #if POINTS_PER_CELL == 1 POINT_BITS = logf(RANGE_SYXRGB) / logf(2); #else float coord_bits = logf((RANGE_Y * RANGE_X) * (RANGE_Y * RANGE_X + 1) / 2); float other_bits = logf(RANGE_R * RANGE_G * RANGE_B * RANGE_S); POINT_BITS = (coord_bits + 2 * other_bits) / logf(2); #endif fprintf(stderr, "Cell bits: %f\n", POINT_BITS); TOTAL_CELLS = (int)(DATA_BITS / POINT_BITS); fprintf(stderr, "Available cells: %i\n", TOTAL_CELLS); fprintf(stderr, "Wasted bits: %f\n", DATA_BITS - POINT_BITS * TOTAL_CELLS); /* Load image */ pipi_set_gamma(1.0); src = pipi_load(argv[1]); width = pipi_get_image_width(src); height = pipi_get_image_height(src); /* Compute best w/h ratio */ dw = 1; dh = TOTAL_CELLS; for(unsigned int i = 1; i <= TOTAL_CELLS; i++) { int j = TOTAL_CELLS / i; float r = (float)width / (float)height; float ir = (float)i / (float)j; float dwr = (float)dw / (float)dh; if(fabs(logf(r / ir)) < fabs(logf(r / dwr))) { dw = i; dh = TOTAL_CELLS / dw; } } while((dh + 1) * dw <= TOTAL_CELLS) dh++; while(dw * (dh + 1) <= TOTAL_CELLS) dw++; fprintf(stderr, "Chosen image ratio: %i:%i (wasting %i point cells)\n", dw, dh, TOTAL_CELLS - dw * dh); fprintf(stderr, "Total wasted bits: %f\n", DATA_BITS - POINT_BITS * dw * dh); /* Resize and filter image to better state */ tmp = pipi_resize(src, dw * RANGE_X, dh * RANGE_Y); pipi_free(src); src = pipi_median_ext(tmp, 1, 1); pipi_free(tmp); /* Analyse image */ analyse(src); /* Render what we just computed */ tmp = pipi_new(dw * RANGE_X, dh * RANGE_Y); render(tmp, 0, 0, dw * RANGE_X, dh * RANGE_Y); error = pipi_measure_rmsd(src, tmp); fprintf(stderr, "Distance: %2.10g\n", error); memset(opstats, 0, sizeof(opstats)); for(int iter = 0, stuck = 0, failures = 0, success = 0; /*stuck < 5 && */iter < 10000; iter++) { if(failures > 500) { stuck++; failures = 0; } pipi_image_t *scrap = pipi_copy(tmp); /* Choose a point at random */ int pt = det_rand(npoints); uint32_t oldval = points[pt]; /* Compute the affected image zone */ float fx, fy, fr, fg, fb, fs; get_point(pt, &fx, &fy, &fr, &fg, &fb, &fs); int zonex = (int)fx / RANGE_X - 1; int zoney = (int)fy / RANGE_Y - 1; int zonew = 3; int zoneh = 3; if(zonex < 0) { zonex = 0; zonew--; } if(zoney < 0) { zoney = 0; zoneh--; } if(zonex + zonew >= (int)dw) { zonew--; } if(zoney + zoneh >= (int)dh) { zoneh--; } /* Choose random operations and measure their effect */ uint8_t op1 = rand_op(); //uint8_t op2 = rand_op(); uint32_t candidates[3]; double besterr = error + 1.0; int bestop = -1; candidates[0] = apply_op(op1, oldval); //candidates[1] = apply_op(op2, oldval); //candidates[2] = apply_op(op1, apply_op(op2, oldval)); for(int i = 0; i < 1; i++) //for(int i = 0; i < 3; i++) { if(oldval == candidates[i]) continue; points[pt] = candidates[i]; render(scrap, zonex * RANGE_X, zoney * RANGE_Y, zonew * RANGE_X, zoneh * RANGE_Y); double newerr = pipi_measure_rmsd(src, scrap); if(newerr < besterr) { besterr = newerr; bestop = i; } } opstats[op1 * 2]++; //opstats[op2 * 2]++; if(besterr < error) { points[pt] = candidates[bestop]; /* Redraw image if the last check wasn't the best one */ if(bestop != 2) render(scrap, zonex * RANGE_X, zoney * RANGE_Y, zonew * RANGE_X, zoneh * RANGE_Y); pipi_free(tmp); tmp = scrap; //fprintf(stderr, "%08i %2.010g %2.010g after op%i(%i)\n", // iter, besterr - error, error, op1, pt); fprintf(stderr, "%08i -.%08i %2.010g after op%i(%i)\n", iter, (int)((error - besterr) * 100000000), error, op1, pt); error = besterr; opstats[op1 * 2 + 1]++; //opstats[op2 * 2 + 1]++; failures = 0; success++; /* Save image! */ //char buf[128]; //sprintf(buf, "twit%08i.bmp", success); //if((success % 10) == 0) // pipi_save(tmp, buf); } else { pipi_free(scrap); points[pt] = oldval; failures++; } } for(int j = 0; j < 2; j++) { fprintf(stderr, "operation: "); for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++) fprintf(stderr, "%4i ", i); fprintf(stderr, "\nattempts: "); for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++) fprintf(stderr, "%4i ", opstats[i * 2]); fprintf(stderr, "\nsuccesses: "); for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++) fprintf(stderr, "%4i ", opstats[i * 2 + 1]); fprintf(stderr, "\n"); } fprintf(stderr, "Distance: %2.10g\n", error); dst = pipi_resize(tmp, width, height); pipi_free(tmp); /* Save image and bail out */ pipi_save(dst, "lol.bmp"); pipi_free(dst); return ret; }