#include "config.h" #include "common.h" #include #include #include #include #include #define Y(x) (0.299*(x)[0] + 0.587*(x)[1] + 0.114*(x)[2]) #define STEPS 16 #define EPSILON (0.000001) int main(int argc, char *argv[]) { double palette[][3] = { { 1.0, 0.0, 0.0 }, /* red */ { 0.0, 1.0, 0.0 }, /* green */ { 0.0, 0.0, 1.0 }, /* blue */ { 1.0, 1.0, 1.0 }, /* white */ { 1.0, 1.0, 0.0 }, /* yellow */ { 1.0, 0.5, 0.0 }, /* orange */ }; #define NCOLORS ((int)(sizeof(palette)/sizeof(*palette))) double tmp; int i, j; /* * 1. Find the darkest and lightest colours */ double *dark = NULL, *light = NULL; double min = 1.0, max = 0.0; for(i = 0; i < NCOLORS; i++) { double p = Y(palette[i]); if(p < min) { dark = palette[i]; min = p; } if(p > max) { light = palette[i]; max = p; } } printf("lightest (%g,%g,%g)\n", light[0], light[1], light[2]); printf("darkest (%g,%g,%g)\n", dark[0], dark[1], dark[2]); /* * 2. Find two base vectors for the chrominance planes * FIXME: this doesn't work in all cases because u can be null */ double y[3], u[3], v[3]; double ylen; y[0] = light[0] - dark[0]; y[1] = light[1] - dark[1]; y[2] = light[2] - dark[2]; ylen = sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]); u[0] = y[1]; u[1] = -y[0]; u[2] = 0; tmp = sqrt(u[0] * u[0] + u[1] * u[1] + u[2] * u[2]); u[0] /= tmp; u[1] /= tmp; u[2] /= tmp; v[0] = y[1] * u[2] - y[2] * u[1]; v[1] = y[2] * u[0] - y[0] * u[2]; v[2] = y[0] * u[1] - y[1] * u[0]; tmp = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] /= tmp; v[1] /= tmp; v[2] /= tmp; printf("gray axis (%g,%g,%g) - length %g\n", y[0], y[1], y[2], ylen); printf("u (%g,%g,%g)\n", u[0], u[1], u[2]); printf("v (%g,%g,%g)\n", v[0], v[1], v[2]); /* * 3. Browse the grey axis and do stuff */ double t; for(t = 0.; t <= 1.0; t += 1. / STEPS) { double pts[NCOLORS*NCOLORS/2][3]; double p0[3]; int npts = 0; p0[0] = dark[0] + t * y[0]; p0[1] = dark[1] + t * y[1]; p0[2] = dark[2] + t * y[2]; printf("%g,%g,%g\n", p0[0], p0[1], p0[2]); /* * 3.1. Find all edges that intersect the t.y + (u,v) plane */ for(i = 0; i < NCOLORS; i++) { double k1[3]; k1[0] = palette[i][0] - dark[0]; k1[1] = palette[i][1] - dark[1]; k1[2] = palette[i][2] - dark[2]; tmp = sqrt(k1[0] * k1[0] + k1[1] * k1[1] + k1[2] * k1[2]); /* If k1.y > t.y.y, we don't want this point */ double yk1 = y[0] * k1[0] + y[1] * k1[1] + y[2] * k1[2]; if(yk1 > t * ylen * ylen + EPSILON) continue; for(j = 0; j < NCOLORS; j++) { if(i == j) continue; double k2[3]; k2[0] = palette[j][0] - dark[0]; k2[1] = palette[j][1] - dark[1]; k2[2] = palette[j][2] - dark[2]; tmp = sqrt(k2[0] * k2[0] + k2[1] * k2[1] + k2[2] * k2[2]); /* If k2.y < t.y.y, we don't want this point */ double yk2 = y[0] * k2[0] + y[1] * k2[1] + y[2] * k2[2]; if(yk2 < t * ylen * ylen - EPSILON) continue; if(yk2 < yk1) continue; double s = yk1 == yk2 ? 0.5 : (t * ylen * ylen - yk1) / (yk2 - yk1); pts[npts][0] = dark[0] + k1[0] + s * (k2[0] - k1[0]); pts[npts][1] = dark[1] + k1[1] + s * (k2[1] - k1[1]); pts[npts][2] = dark[2] + k1[2] + s * (k2[2] - k1[2]); printf(" %i,%i: s = (%g,%g,%g)\n", i, j, pts[npts][0], pts[npts][1], pts[npts][2]); npts++; } } /* * 3.2. Find the barycentre of these points' convex hull. (TODO) */ } return 0; }