/* * img2twit Image to short text message encoder/decoder * Copyright (c) 2009 Sam Hocevar * All Rights Reserved * * This program is free software. It comes without any warranty, to * the extent permitted by applicable law. You can redistribute it * and/or modify it under the terms of the Do What The Fuck You Want * To Public License, Version 2, as published by Sam Hocevar. See * http://sam.zoy.org/wtfpl/COPYING for more details. */ /* TODO: * - remove the complicated stuff from get_point/set_point, it's only * the final packing that really matters. */ #include "config.h" #include #include #include #include #include #include #include #include #include "../genethumb/mygetopt.h" /* * Format-dependent settings. Change this and you risk making all other * generated strings unusable. */ /* Printable ASCII (except space) */ #define RANGE_ASCII 0x0021, 0x007f /* CJK Unified Ideographs */ #define RANGE_CJK 0x4e00, 0x9fa6 //0x2e80, 0x2e9a, 0x2e9b, 0x2ef4, /* CJK Radicals Supplement */ //0x2f00, 0x2fd6, /* Kangxi Radicals */ //0x3400, 0x4db6, /* CJK Unified Ideographs Extension A */ //0xac00, 0xd7a4, /* Hangul Syllables -- Korean, not Chinese */ //0xf900, 0xfa2e, 0xfa30, 0xfa6b, 0xfa70, 0xfada, /* CJK Compat. Idgphs. */ /* TODO: there's also the U+20000 and U+2f800 planes, but they're * not supported by the Twitter Javascript filter (yet?). */ /* Stupid symbols and Dingbats shit */ #define RANGE_SYMBOLS 0x25a0, 0x2600, /* Geometric Shapes */ \ 0x2600, 0x269e, 0x26a0, 0x26bd, 0x26c0, 0x26c4, /* Misc. Symbols */ \ 0x2701, 0x2705, 0x2706, 0x270a, 0x270c, 0x2728, 0x2729, 0x274c, \ 0x274d, 0x274e, 0x274f, 0x2753, 0x2756, 0x2757, 0x2758, 0x275f, \ 0x2761, 0x2795, 0x2798, 0x27b0, 0x27b1, 0x27bf /* Dingbats */ /* End of list marker */ #define RANGE_END 0x0, 0x0 /* Pre-defined character ranges XXX: must be _ordered_ */ static const uint32_t unichars_ascii[] = { RANGE_ASCII, RANGE_END }; static const uint32_t unichars_cjk[] = { RANGE_CJK, RANGE_END }; static const uint32_t unichars_symbols[] = { RANGE_SYMBOLS, RANGE_END }; /* The Unicode characters at disposal */ static const uint32_t *unichars; /* The maximum image size we want to support, and the version range */ #define RANGE_W 2000 #define RANGE_H 2000 #define RANGE_V 10 /* Start with a random image (1), or with a good estimate (0)? */ #define RANDOM_START 0 /* * These values can be overwritten at runtime */ /* Debug mode */ static bool DEBUG_MODE = false; /* The maximum message length */ static int MAX_MSG_LEN = 140; /* Iterations per point -- larger means slower but nicer */ static int ITERATIONS_PER_POINT = 50; /* Points per cell -- 1 allows to put more cells, but 2 gives better results */ static int POINTS_PER_CELL = 2; /* The range value for point parameters: X Y, red/green/blue, "strength" * Tested values (on Mona Lisa) are: * 16 16 5 5 5 2 -> 0.06511725914 * 16 16 6 7 6 1 -> 0.05731491348 * * 16 16 7 6 6 1 -> 0.06450513783 * 14 14 7 7 6 1 -> 0.0637207893 * 19 19 6 6 5 1 -> 0.06801999094 */ static unsigned int RANGE_X = 16; static unsigned int RANGE_Y = 16; static unsigned int RANGE_R = 6; static unsigned int RANGE_G = 6; static unsigned int RANGE_B = 6; static unsigned int RANGE_S = 1; /* * These values are computed at runtime */ static float TOTAL_BITS; static float HEADER_BITS; static float DATA_BITS; static float CELL_BITS; static int NUM_CHARACTERS; static int MAX_ITERATIONS; static unsigned int TOTAL_CELLS; #define RANGE_XY2 (RANGE_Y*RANGE_X*(RANGE_Y*RANGE_X+1)/2) #define RANGE_SBGR (RANGE_R*RANGE_G*RANGE_B*RANGE_S) #define RANGE_SBGRXY (RANGE_Y*RANGE_X*RANGE_R*RANGE_G*RANGE_B*RANGE_S) struct K : CGAL::Exact_predicates_inexact_constructions_kernel {}; typedef CGAL::Delaunay_triangulation_2 Delaunay_triangulation; typedef std::vector > Point_coordinate_vector; /* Global aspect ratio */ static unsigned int dw, dh; /* Algorithm version */ static unsigned int version; /* Global point encoding */ typedef struct point { uint8_t x, y, r, g, b, s; } point_t; static point_t points[4096]; /* FIXME: allocate this dynamically */ static int npoints = 0; /* Global triangulation */ static Delaunay_triangulation dt; /* * Bit allocation handling */ void compute_ranges(int width, int height) { TOTAL_BITS = MAX_MSG_LEN * logf(NUM_CHARACTERS) / logf(2); HEADER_BITS = logf(RANGE_W * RANGE_H * RANGE_V) / logf(2); DATA_BITS = TOTAL_BITS - HEADER_BITS; if(version == 0) { POINTS_PER_CELL = 1; CELL_BITS = logf(RANGE_SBGRXY) / logf(2); } else if(version == 1) { POINTS_PER_CELL = 2; CELL_BITS = (2 * logf(RANGE_SBGR) + logf(RANGE_XY2)) / logf(2); } TOTAL_CELLS = (int)(DATA_BITS / CELL_BITS); MAX_ITERATIONS = ITERATIONS_PER_POINT * POINTS_PER_CELL * TOTAL_CELLS; /* Compute "best" w/h ratio */ dw = 1; dh = TOTAL_CELLS; for(unsigned int i = 1; i <= TOTAL_CELLS; i++) { int j = TOTAL_CELLS / i; float r = (float)width / (float)height; float ir = (float)i / (float)j; float dwr = (float)dw / (float)dh; if(fabs(logf(r / ir)) < fabs(logf(r / dwr))) { dw = i; dh = TOTAL_CELLS / dw; } } while((dh + 1) * dw <= TOTAL_CELLS) dh++; while(dh * (dw + 1) <= TOTAL_CELLS) dw++; } /* * Unicode stuff handling */ /* Return the number of chars in the unichars table */ static int count_unichars(void) { int ret = 0; for(int u = 0; unichars[u] != unichars[u + 1]; u += 2) ret += unichars[u + 1] - unichars[u]; return ret; } /* Get the ith Unicode character in our list */ static uint32_t index2uni(uint32_t i) { for(int u = 0; unichars[u] != unichars[u + 1]; u += 2) if(i < unichars[u + 1] - unichars[u]) return unichars[u] + i; else i -= unichars[u + 1] - unichars[u]; return 0; /* Should not happen! */ } /* Convert a Unicode character to its position in the compact list */ static uint32_t uni2index(uint32_t x) { uint32_t ret = 0; for(int u = 0; unichars[u] != unichars[u + 1]; u += 2) if(x < unichars[u + 1]) return ret + x - unichars[u]; else ret += unichars[u + 1] - unichars[u]; return ret; /* Should not happen! */ } static uint8_t const utf8_trailing[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5 }; static uint32_t const utf8_offsets[6] = { 0x00000000UL, 0x00003080UL, 0x000E2080UL, 0x03C82080UL, 0xFA082080UL, 0x82082080UL }; static uint32_t fread_utf8(FILE *f) { int ch, i = 0, todo = -1; uint32_t ret = 0; for(;;) { ch = fgetc(f); if(!ch) return 0; if(todo == -1) todo = utf8_trailing[ch]; ret += ((uint32_t)ch) << (6 * (todo - i)); if(todo == i++) return ret - utf8_offsets[todo]; } } static void fwrite_utf8(FILE *f, uint32_t x) { static const uint8_t mark[7] = { 0x00, 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; char buf[8]; char *parser = buf; size_t bytes; if(x < 0x80) { fprintf(f, "%c", x); return; } bytes = (x < 0x800) ? 2 : (x < 0x10000) ? 3 : 4; parser += bytes; *parser = '\0'; switch(bytes) { case 4: *--parser = (x | 0x80) & 0xbf; x >>= 6; case 3: *--parser = (x | 0x80) & 0xbf; x >>= 6; case 2: *--parser = (x | 0x80) & 0xbf; x >>= 6; } *--parser = x | mark[bytes]; fprintf(f, "%s", buf); } /* * Our nifty non-power-of-two bitstack handling */ class bitstack { public: bitstack(int max) { alloc(max); init(0); } ~bitstack() { delete[] digits; delete[] str; } char const *tostring() { int pos = sprintf(str, "0x%x", digits[msb]); for(int i = msb - 1; i >= 0; i--) pos += sprintf(str + pos, "%08x", digits[i]); return str; } void push(uint32_t val, uint32_t range) { if(!range) return; mul(range); add(val % range); } uint32_t pop(uint32_t range) { if(!range) return 0; return div(range); } bool isempty() { for(int i = msb; i >= 0; i--) if(digits[i]) return false; return true; } private: bitstack(int max, uint32_t x) { alloc(max); init(x); } bitstack(bitstack &b) { alloc(b.max_size); msb = b.msb; memcpy(digits, b.digits, (max_size + 1) * sizeof(uint32_t)); } bitstack(bitstack const &b) { alloc(b.max_size); msb = b.msb; memcpy(digits, b.digits, (max_size + 1) * sizeof(uint32_t)); } void alloc(int max) { max_size = max; digits = new uint32_t[max_size + 1]; str = new char[(max_size + 1) * 8 + 1]; } void init(uint32_t i) { msb = 0; memset(digits, 0, (max_size + 1) * sizeof(uint32_t)); digits[0] = i; } /* Could be done much faster, but we don't care! */ void add(uint32_t x) { add(bitstack(max_size, x)); } void sub(uint32_t x) { sub(bitstack(max_size, x)); } void add(bitstack const &_b) { /* Copy the operand in case we get added to ourselves */ bitstack b(_b); uint64_t x = 0; if(msb < b.msb) msb = b.msb; for(int i = 0; i <= msb; i++) { uint64_t tmp = (uint64_t)digits[i] + (uint64_t)b.digits[i] + x; digits[i] = tmp; if((uint64_t)digits[i] == tmp) x = 0; else { x = 1; if(i == msb) msb++; } } } void sub(bitstack const &_b) { /* Copy the operand in case we get substracted from ourselves */ bitstack b(_b); uint64_t x = 0; /* We cannot substract a larger number! */ if(msb < b.msb) { init(0); return; } for(int i = 0; i <= msb; i++) { uint64_t tmp = (uint64_t)digits[i] - (uint64_t)b.digits[i] - x; digits[i] = tmp; if((uint64_t)digits[i] == tmp) x = 0; else { x = 1; if(i == msb) { /* Error: carry into MSB! */ init(0); return; } } } while(msb > 0 && digits[msb] == 0) msb--; } void mul(uint32_t x) { bitstack b(*this); init(0); while(x) { if(x & 1) add(b); x /= 2; b.add(b); } } uint32_t div(uint32_t x) { bitstack b(*this); for(int i = msb; i >= 0; i--) { uint64_t tmp = b.digits[i] + (((uint64_t)b.digits[i + 1]) << 32); uint32_t res = tmp / x; uint32_t rem = tmp % x; digits[i]= res; b.digits[i + 1] = 0; b.digits[i] = rem; } while(msb > 0 && digits[msb] == 0) msb--; return b.digits[0]; } int msb, max_size; uint32_t *digits; char *str; }; /* * Point handling */ static unsigned int det_rand(unsigned int mod) { static unsigned long next = 1; next = next * 1103515245 + 12345; return ((unsigned)(next / 65536) % 32768) % mod; } static inline int range2int(float val, int range) { int ret = (int)(val * ((float)range - 0.0001)); return ret < 0 ? 0 : ret > range - 1 ? range - 1 : ret; } static inline float int2midrange(int val, int range) { return (float)(1 + 2 * val) / (float)(2 * range); } static inline float int2fullrange(int val, int range) { return range > 1 ? (float)val / (float)(range - 1) : 0.0; } static inline void index2cell(int index, int *dx, int *dy) { *dx = (index / POINTS_PER_CELL) % dw; *dy = (index / POINTS_PER_CELL) / dw; } static inline void set_point(int index, float x, float y, float r, float g, float b, float s) { int dx, dy; index2cell(index, &dx, &dy); float fx = (x - dx * RANGE_X) / RANGE_X; float fy = (y - dy * RANGE_Y) / RANGE_Y; points[index].x = range2int(fx, RANGE_X); points[index].y = range2int(fy, RANGE_Y); points[index].r = range2int(r, RANGE_R); points[index].g = range2int(g, RANGE_G); points[index].b = range2int(b, RANGE_B); points[index].s = range2int(s, RANGE_S); } static inline void get_point(int index, float *x, float *y, float *r, float *g, float *b, float *s) { int dx, dy; index2cell(index, &dx, &dy); float fx = int2midrange(points[index].x, RANGE_X); float fy = int2midrange(points[index].y, RANGE_Y); *y = (fy + dy) * RANGE_Y /*+ 0.5 * (index & 1)*/; *x = (fx + dx) * RANGE_X /*+ 0.5 * (index & 1)*/; *r = int2fullrange(points[index].r, RANGE_R); *g = int2fullrange(points[index].g, RANGE_G); *b = int2fullrange(points[index].b, RANGE_B); *s = int2fullrange(points[index].s, RANGE_S); } static void add_point(float x, float y, float r, float g, float b, float s) { set_point(npoints, x, y, r, g, b, s); npoints++; } static uint32_t pack_coords(int x1, int y1, int x2, int y2, bool *swap) { int k1 = y1 * RANGE_X + x1; int k2 = y2 * RANGE_X + x2; /* XXX: this should not happen */ if(k1 == k2) k1 += (x1 > 0 ? -1 : 1); *swap = k1 > k2; if(*swap) { int tmp = k1; k1 = k2; k2 = tmp; } return k2 * (k2 + 1) / 2 + k1; } static void unpack_coords(uint32_t pack, int *x1, int *y1, int *x2, int *y2) { int k2 = ((int)sqrt(1.0 + 8 * pack) - 1) / 2; int k1 = pack - k2 * (k2 + 1) / 2; *x1 = k1 % RANGE_X; *y1 = k1 / RANGE_X; *x2 = k2 % RANGE_X; *y2 = k2 / RANGE_X; } #if RANDOM_START == 1 static void add_random_point() { points[npoints].x = det_rand(RANGE_X); points[npoints].y = det_rand(RANGE_Y); points[npoints].r = det_rand(RANGE_R); points[npoints].g = det_rand(RANGE_G); points[npoints].b = det_rand(RANGE_B); points[npoints].s = det_rand(RANGE_S); npoints++; } #endif #define NB_OPS 20 static uint8_t rand_op(void) { uint8_t x = det_rand(NB_OPS); /* Randomly ignore statistically less efficient ops */ if(x == 0) return rand_op(); if(x == 1 && (RANGE_S == 1 || det_rand(2))) return rand_op(); if(x <= 5 && det_rand(2)) return rand_op(); //if((x < 10 || x > 15) && !det_rand(4)) /* Favour colour changes */ // return rand_op(); return x; } static void apply_op(uint8_t op, point_t *val) { switch(op) { case 0: /* Flip strength value */ case 1: /* Statistics show that this helps often, but does not reduce * the error significantly. */ val->s ^= 1; break; case 2: /* Move up; if impossible, down */ val->y = val->y > 0 ? val->y - 1 : val->y + 1; break; case 3: /* Move down; if impossible, up */ val->y = val->y + 1U < RANGE_Y ? val->y + 1 : val->y - 1; break; case 4: /* Move left; if impossible, right */ val->x = val->x > 0 ? val->x - 1 : val->x + 1; break; case 5: /* Move right; if impossible, left */ val->x = val->x + 1U < RANGE_X ? val->x + 1 : val->x - 1; break; case 6: /* Corner 1 */ val->y = val->y > 0 ? val->y - 1 : val->y + 1; val->x = val->x > 0 ? val->x - 1 : val->x + 1; break; case 7: /* Corner 2 */ val->y = val->y > 0 ? val->y - 1 : val->y + 1; val->x = val->x + 1U < RANGE_X ? val->x + 1 : val->x - 1; break; case 8: /* Corner 3 */ val->y = val->y + 1U < RANGE_Y ? val->y + 1 : val->y - 1; val->x = val->x + 1U < RANGE_X ? val->x + 1 : val->x - 1; break; case 9: /* Corner 4 */ val->y = val->y + 1U < RANGE_Y ? val->y + 1 : val->y - 1; val->x = val->x > 0 ? val->x - 1 : val->x + 1; break; case 16: /* Double up */ val->y = val->y > 1 ? val->y - 2 : val->y + 2; break; case 17: /* Double down */ val->y = val->y + 2U < RANGE_Y ? val->y + 2 : val->y - 2; break; case 18: /* Double left */ val->x = val->x > 1 ? val->x - 2 : val->x + 2; break; case 19: /* Double right */ val->x = val->x + 2U < RANGE_X ? val->x + 2 : val->x - 2; break; case 10: /* R-- (or R++) */ val->r = val->r > 0 ? val->r - 1 : val->r + 1; break; case 11: /* R++ (or R--) */ val->r = val->r + 1U < RANGE_R ? val->r + 1 : val->r - 1; break; case 12: /* G-- (or G++) */ val->g = val->g > 0 ? val->g - 1 : val->g + 1; break; case 13: /* G++ (or G--) */ val->g = val->g + 1U < RANGE_G ? val->g + 1 : val->g - 1; break; case 14: /* B-- (or B++) */ val->b = val->b > 0 ? val->g - 1 : val->b + 1; break; case 15: /* B++ (or B--) */ val->b = val->b + 1U < RANGE_B ? val->b + 1 : val->b - 1; break; #if 0 case 15: /* Brightness-- */ apply_op(9, val); apply_op(11, val); apply_op(13, val); break; case 16: /* Brightness++ */ apply_op(10, val); apply_op(12, val); apply_op(14, val); break; case 17: /* RG-- */ apply_op(9, val); apply_op(11, val); break; case 18: /* RG++ */ apply_op(10, val); apply_op(12, val); break; case 19: /* GB-- */ apply_op(11, val); apply_op(13, val); break; case 20: /* GB++ */ apply_op(12, val); apply_op(14, val); break; case 21: /* RB-- */ apply_op(9, val); apply_op(13, val); break; case 22: /* RB++ */ apply_op(10, val); apply_op(14, val); break; #endif default: break; } } static void render(pipi_image_t *dst, int rx, int ry, int rw, int rh) { int lookup[dw * RANGE_X * 2 * dh * RANGE_Y * 2]; pipi_pixels_t *p = pipi_get_pixels(dst, PIPI_PIXELS_RGBA_F32); float *data = (float *)p->pixels; int x, y; memset(lookup, 0, sizeof(lookup)); dt.clear(); for(int i = 0; i < npoints; i++) { float fx, fy, fr, fg, fb, fs; get_point(i, &fx, &fy, &fr, &fg, &fb, &fs); dt.insert(K::Point_2(fx + dw * RANGE_X, fy + dh * RANGE_Y)); /* Keep link to point */ lookup[(int)(fx * 2) + dw * RANGE_X * 2 * (int)(fy * 2)] = i; } /* Add fake points to close the triangulation */ dt.insert(K::Point_2(0, 0)); dt.insert(K::Point_2(3 * dw * RANGE_X, 0)); dt.insert(K::Point_2(0, 3 * dh * RANGE_Y)); dt.insert(K::Point_2(3 * dw * RANGE_X, 3 * dh * RANGE_Y)); for(y = ry; y < ry + rh; y++) { for(x = rx; x < rx + rw; x++) { float myx = (float)x * dw * RANGE_X / p->w; float myy = (float)y * dh * RANGE_Y / p->h; K::Point_2 m(myx + dw * RANGE_X, myy + dh * RANGE_Y); Point_coordinate_vector coords; CGAL::Triple< std::back_insert_iterator, K::FT, bool> result = CGAL::natural_neighbor_coordinates_2(dt, m, std::back_inserter(coords)); float r = 0.0f, g = 0.0f, b = 0.0f, norm = 0.000000000000001f; Point_coordinate_vector::iterator it; for(it = coords.begin(); it != coords.end(); ++it) { float fx, fy, fr, fg, fb, fs; fx = (*it).first.x() - dw * RANGE_X; fy = (*it).first.y() - dh * RANGE_Y; if(fx < 0 || fy < 0 || fx > dw * RANGE_X - 1 || fy > dh * RANGE_Y - 1) continue; int index = lookup[(int)(fx * 2) + dw * RANGE_X * 2 * (int)(fy * 2)]; get_point(index, &fx, &fy, &fr, &fg, &fb, &fs); //float k = pow((*it).second * (1.0 + fs), 1.2); float k = (*it).second * (1.00f + fs); //float k = (*it).second * (0.60f + fs); //float k = pow((*it).second, (1.0f + fs)); // Try to attenuate peak artifacts k *= pow(((myx - fx) * (myx - fx) + (myy - fy) * (myy - fy) + 0.01) / (RANGE_X * RANGE_X + RANGE_Y * RANGE_Y), -0.5); // Cute circles //k = 1.0 / (0.015 * (RANGE_X * RANGE_X + RANGE_Y * RANGE_Y) // + (myx - fx) * (myx - fx) + (myy - fy) * (myy - fy)); r += k * fr; g += k * fg; b += k * fb; norm += k; } data[4 * (x + y * p->w) + 0] = r / norm; data[4 * (x + y * p->w) + 1] = g / norm; data[4 * (x + y * p->w) + 2] = b / norm; data[4 * (x + y * p->w) + 3] = 0.0; } } pipi_release_pixels(dst, p); } static void analyse(pipi_image_t *src) { pipi_pixels_t *p = pipi_get_pixels(src, PIPI_PIXELS_RGBA_F32); float *data = (float *)p->pixels; for(unsigned int dy = 0; dy < dh; dy++) for(unsigned int dx = 0; dx < dw; dx++) { float min = 1.1f, max = -0.1f, mr = 0.0f, mg = 0.0f, mb = 0.0f; float total = 0.0; int xmin = 0, xmax = 0, ymin = 0, ymax = 0; int npixels = 0; for(unsigned int iy = RANGE_Y * dy; iy < RANGE_Y * (dy + 1); iy++) for(unsigned int ix = RANGE_X * dx; ix < RANGE_X * (dx + 1); ix++) { float lum = 0.0f; lum += data[4 * (ix + iy * p->w) + 0]; lum += data[4 * (ix + iy * p->w) + 1]; lum += data[4 * (ix + iy * p->w) + 2]; lum /= 3; mr += data[4 * (ix + iy * p->w) + 0]; mg += data[4 * (ix + iy * p->w) + 1]; mb += data[4 * (ix + iy * p->w) + 2]; if(lum < min) { min = lum; xmin = ix; ymin = iy; } if(lum > max) { max = lum; xmax = ix; ymax = iy; } total += lum; npixels++; } total /= npixels; mr /= npixels; mg /= npixels; mb /= npixels; float wmin, wmax; if(total < min + (max - min) / 4) wmin = 1.0, wmax = 0.0; else if(total < min + (max - min) / 4 * 3) wmin = 0.0, wmax = 0.0; else wmin = 0.0, wmax = 1.0; #if RANDOM_START == 1 for(int i = 0; i < POINTS_PER_CELL; i++) add_random_point(); #else /* 0.80 and 0.20 were chosen empirically, it gives a 10% better * initial distance. Definitely worth it. */ if(POINTS_PER_CELL == 2 || total < min + (max - min) / 2) add_point(xmin, ymin, data[4 * (xmin + ymin * p->w) + 0] * 0.80 + mr * 0.20, data[4 * (xmin + ymin * p->w) + 1] * 0.80 + mg * 0.20, data[4 * (xmin + ymin * p->w) + 2] * 0.80 + mb * 0.20, wmin); if(POINTS_PER_CELL == 2 || total >= min + (max - min) / 2) add_point(xmax, ymax, data[4 * (xmax + ymax * p->w) + 0] * 0.80 + mr * 0.20, data[4 * (xmax + ymax * p->w) + 1] * 0.80 + mg * 0.20, data[4 * (xmax + ymax * p->w) + 2] * 0.80 + mb * 0.20, wmax); #endif } } #define MOREINFO "Try `%s --help' for more information.\n" int main(int argc, char *argv[]) { uint32_t unicode_data[2048]; int opstats[2 * NB_OPS]; char const *srcname = NULL, *dstname = NULL; pipi_image_t *src, *tmp, *dst; double error = 1.0; int width, height; /* Parse command-line options */ for(;;) { int option_index = 0; static struct myoption long_options[] = { { "output", 1, NULL, 'o' }, { "length", 1, NULL, 'l' }, { "charset", 1, NULL, 'c' }, { "quality", 1, NULL, 'q' }, { "debug", 0, NULL, 'd' }, { "help", 0, NULL, 'h' }, { NULL, 0, NULL, 0 }, }; int c = mygetopt(argc, argv, "o:l:c:q:dh", long_options, &option_index); if(c == -1) break; switch(c) { case 'o': dstname = myoptarg; break; case 'l': MAX_MSG_LEN = atoi(myoptarg); if(MAX_MSG_LEN < 16) { fprintf(stderr, "Warning: rounding minimum message length to 16\n"); MAX_MSG_LEN = 16; } break; case 'c': if(!strcmp(myoptarg, "ascii")) unichars = unichars_ascii; else if(!strcmp(myoptarg, "cjk")) unichars = unichars_cjk; else if(!strcmp(myoptarg, "symbols")) unichars = unichars_symbols; else { fprintf(stderr, "Error: invalid char block \"%s\".", myoptarg); fprintf(stderr, "Valid sets are: ascii, cjk, symbols\n"); return EXIT_FAILURE; } break; case 'q': ITERATIONS_PER_POINT = 10 * atof(myoptarg); if(ITERATIONS_PER_POINT < 0) ITERATIONS_PER_POINT = 0; else if(ITERATIONS_PER_POINT > 200) ITERATIONS_PER_POINT = 200; break; case 'd': DEBUG_MODE = true; break; case 'h': printf("Usage: img2twit [OPTIONS] SOURCE\n"); printf(" img2twit [OPTIONS] -o DESTINATION\n"); printf("Encode SOURCE image to stdout or decode stdin to DESTINATION.\n"); printf("\n"); printf("Mandatory arguments to long options are mandatory for short options too.\n"); printf(" -o, --output output resulting image to filename\n"); printf(" -l, --length message length in characters (default 140)\n"); printf(" -c, --charset character set to use (ascii, [cjk], symbols)\n"); printf(" -q, --quality set image quality (0 - 20) (default 5)\n"); printf(" -d, --debug print debug information\n"); printf(" -h, --help display this help and exit\n"); printf("\n"); printf("Written by Sam Hocevar. Report bugs to .\n"); return EXIT_SUCCESS; default: fprintf(stderr, "%s: invalid option -- %c\n", argv[0], c); printf(MOREINFO, argv[0]); return EXIT_FAILURE; } } if(myoptind == argc && !dstname) { fprintf(stderr, "%s: too few arguments\n", argv[0]); printf(MOREINFO, argv[0]); return EXIT_FAILURE; } if((myoptind == argc - 1 && dstname) || myoptind < argc - 1) { fprintf(stderr, "%s: too many arguments\n", argv[0]); printf(MOREINFO, argv[0]); return EXIT_FAILURE; } if(myoptind == argc - 1) srcname = argv[myoptind]; /* Decoding mode: read UTF-8 text from stdin */ if(dstname) for(MAX_MSG_LEN = 0; ;) { uint32_t ch = fread_utf8(stdin); if(ch == 0xffffffff || ch == '\n') break; if(ch <= ' ') continue; unicode_data[MAX_MSG_LEN++] = ch; if(MAX_MSG_LEN >= 2048) { fprintf(stderr, "Error: message too long.\n"); return EXIT_FAILURE; } } if(MAX_MSG_LEN == 0) { fprintf(stderr, "Error: empty message.\n"); return EXIT_FAILURE; } bitstack b(MAX_MSG_LEN); /* We cannot declare this before, because * MAX_MSG_LEN wouldn't be defined. */ /* Autodetect charset if decoding, otherwise switch to CJK. */ if(dstname) { char const *charset; if(unicode_data[0] >= 0x0021 && unicode_data[0] < 0x007f) { unichars = unichars_ascii; charset = "ascii"; } else if(unicode_data[0] >= 0x4e00 && unicode_data[0] < 0x9fa6) { unichars = unichars_cjk; charset = "cjk"; } else if(unicode_data[0] >= 0x25a0 && unicode_data[0] < 0x27bf) { unichars = unichars_symbols; charset = "symbols"; } else { fprintf(stderr, "Error: unable to detect charset\n"); return EXIT_FAILURE; } if(DEBUG_MODE) fprintf(stderr, "Detected charset \"%s\"\n", charset); } else if(!unichars) unichars = unichars_cjk; pipi_set_gamma(1.0); /* Precompute bit allocation */ NUM_CHARACTERS = count_unichars(); if(dstname) { /* Decoding mode: find each character's index in our character * list, and push it to our wonderful custom bitstream. */ for(int i = MAX_MSG_LEN; i--; ) b.push(uni2index(unicode_data[i]), NUM_CHARACTERS); /* The first thing we pop from the stream is the version information */ version = b.pop(RANGE_V); if(version > 1) { fprintf(stderr, "Error: unsupported algorithm version %i\n", version); return EXIT_FAILURE; } /* Read width and height from bitstream */ width = b.pop(RANGE_W) + 1; height = b.pop(RANGE_H) + 1; src = NULL; } else { /* Argument given: open image for encoding */ src = pipi_load(srcname); if(!src) { fprintf(stderr, "Error loading %s\n", srcname); return EXIT_FAILURE; } version = 1; width = pipi_get_image_width(src); height = pipi_get_image_height(src); } if(width <= 0 || height <= 0 || width > RANGE_W || height > RANGE_H) { fprintf(stderr, "Error: image size %ix%i is out of bounds\n", width, height); return EXIT_FAILURE; } compute_ranges(width, height); /* Try to cram some more information into our points as long as it * does not change the cell distribution. This cannot be too clever, * because we want the computation to depend only on the source image * coordinates. */ #define TRY(op, revert) \ do { \ unsigned int olddw = dw, olddh = dh; \ op; compute_ranges(width, height); \ if(dw != olddw || dh != olddh) \ { revert; compute_ranges(width, height); } \ } while(0) for(int i = 0; i < 2; i++) { TRY(RANGE_G++, RANGE_G--); TRY(RANGE_R++, RANGE_R--); TRY(RANGE_B++, RANGE_B--); } for(int i = 0; i < 10; i++) { if((float)width / dw >= (float)height / dh) { TRY(RANGE_X++, RANGE_X--); TRY(RANGE_Y++, RANGE_Y--); } else { TRY(RANGE_Y++, RANGE_Y--); TRY(RANGE_X++, RANGE_X--); } } /* Print debug information */ if(DEBUG_MODE) { fprintf(stderr, "Message size: %i\n", MAX_MSG_LEN); fprintf(stderr, "Available characters: %i\n", NUM_CHARACTERS); fprintf(stderr, "Available bits: %f\n", TOTAL_BITS); fprintf(stderr, "Width/Height ranges: %ix%i\n", RANGE_W, RANGE_H); fprintf(stderr, "Algorithm version: %i\n", RANGE_V); fprintf(stderr, "Image resolution: %ix%i\n", width, height); fprintf(stderr, "Header bits: %f\n", HEADER_BITS); fprintf(stderr, "Bits available for data: %f\n", DATA_BITS); fprintf(stderr, "X/Y/Red/Green/Blue/Extra ranges: %i %i %i %i %i %i\n", RANGE_X, RANGE_Y, RANGE_R, RANGE_G, RANGE_B, RANGE_S); fprintf(stderr, "Cell bits: %f\n", CELL_BITS); fprintf(stderr, "Available cells: %i\n", TOTAL_CELLS); fprintf(stderr, "Wasted bits: %f\n", DATA_BITS - CELL_BITS * TOTAL_CELLS); fprintf(stderr, "Chosen image ratio: %i:%i (wasting %i point cells)\n", dw, dh, TOTAL_CELLS - dw * dh); fprintf(stderr, "Total wasted bits: %f\n", DATA_BITS - CELL_BITS * dw * dh); } if(srcname) { /* Resize and filter image to better state */ tmp = pipi_gaussian_blur(src, 0.25 * dw * RANGE_X / width); pipi_free(src); src = pipi_resize(tmp, dw * RANGE_X, dh * RANGE_Y); pipi_free(tmp); /* Analyse image */ analyse(src); /* Render what we just computed */ tmp = pipi_new(dw * RANGE_X, dh * RANGE_Y); render(tmp, 0, 0, dw * RANGE_X, dh * RANGE_Y); error = pipi_measure_rmsd(src, tmp); if(DEBUG_MODE) fprintf(stderr, "Initial distance: %2.10g\n", error); memset(opstats, 0, sizeof(opstats)); for(int iter = 0, stuck = 0, failures = 0, success = 0; iter < MAX_ITERATIONS /* && stuck < 5 && */; iter++) { if(failures > 500) { stuck++; failures = 0; } if(!DEBUG_MODE && !(iter % 16)) fprintf(stderr, "\rEncoding... %i%%", iter * 100 / MAX_ITERATIONS); pipi_image_t *scrap = pipi_copy(tmp); /* Choose a point at random */ int pt = det_rand(npoints); point_t oldpt = points[pt]; /* Compute the affected image zone */ float fx, fy, fr, fg, fb, fs; get_point(pt, &fx, &fy, &fr, &fg, &fb, &fs); int zonex = (int)fx / RANGE_X - 2; int zoney = (int)fy / RANGE_Y - 2; int zonew = 4; int zoneh = 4; if(zonex < 0) { zonew += zonex; zonex = 0; } if(zoney < 0) { zoneh += zoney; zoney = 0;; } if(zonex + zonew > (int)dw) { zonew = dw - zonex; } if(zoney + zoneh > (int)dh) { zoneh = dh - zoney; } /* Choose random operations and measure their effect */ uint8_t op1 = rand_op(); //uint8_t op2 = rand_op(); apply_op(op1, &points[pt]); /* Check that two points don't fall at the same place */ if(POINTS_PER_CELL == 2) { while(points[pt].x == points[pt ^ 1].x && points[pt].y == points[pt ^ 1].y) { points[pt] = oldpt; op1 = rand_op(); apply_op(op1, &points[pt]); } } render(scrap, zonex * RANGE_X, zoney * RANGE_Y, zonew * RANGE_X, zoneh * RANGE_Y); double newerr = pipi_measure_rmsd(src, scrap); opstats[op1 * 2]++; //opstats[op2 * 2]++; if(newerr < error) { pipi_free(tmp); #if 0 /* Save image! */ if((success % 10) == 0) { char buf[128]; sprintf(buf, "twit%08i.bmp", success); tmp = pipi_new(width, height); render(tmp, 0, 0, width, height); pipi_save(tmp, buf); pipi_free(tmp); } #endif tmp = scrap; if(DEBUG_MODE) fprintf(stderr, "%08i -0.%010i %2.010g after op%i(%i)\n", iter, (int)((error - newerr) * 10000000000L), error, op1, pt); error = newerr; opstats[op1 * 2 + 1]++; //opstats[op2 * 2 + 1]++; failures = 0; success++; } else { pipi_free(scrap); points[pt] = oldpt; failures++; } } if(DEBUG_MODE) { for(int j = 0; j < 2; j++) { fprintf(stderr, "operation: "); for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++) fprintf(stderr, "%4i ", i); fprintf(stderr, "\nattempts: "); for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++) fprintf(stderr, "%4i ", opstats[i * 2]); fprintf(stderr, "\nsuccesses: "); for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++) fprintf(stderr, "%4i ", opstats[i * 2 + 1]); fprintf(stderr, "\n"); } fprintf(stderr, "Distance: %2.10g\n", error); } else fprintf(stderr, "\r \r"); #if 0 dst = pipi_resize(tmp, width, height); pipi_free(tmp); /* Save image and bail out */ pipi_save(dst, "lol.bmp"); pipi_free(dst); #endif /* Push our points to the bitstream */ for(int i = 0; i < npoints; i += POINTS_PER_CELL) { if(POINTS_PER_CELL == 2) { int x1, y1, x2, y2; x1 = points[i].x; y1 = points[i].y; x2 = points[i + 1].x; y2 = points[i + 1].y; bool swap; uint32_t pack = pack_coords(x1, y1, x2, y2, &swap); b.push(points[i + (swap ? 1 : 0)].s, RANGE_S); b.push(points[i + (swap ? 1 : 0)].b, RANGE_B); b.push(points[i + (swap ? 1 : 0)].g, RANGE_G); b.push(points[i + (swap ? 1 : 0)].r, RANGE_R); b.push(points[i + (swap ? 0 : 1)].s, RANGE_S); b.push(points[i + (swap ? 0 : 1)].b, RANGE_B); b.push(points[i + (swap ? 0 : 1)].g, RANGE_G); b.push(points[i + (swap ? 0 : 1)].r, RANGE_R); b.push(pack, RANGE_XY2); } else { b.push(points[i].s, RANGE_S); b.push(points[i].b, RANGE_B); b.push(points[i].g, RANGE_G); b.push(points[i].r, RANGE_R); b.push(points[i].x, RANGE_X); b.push(points[i].y, RANGE_Y); } } b.push(height - 1, RANGE_H); b.push(width - 1, RANGE_W); b.push(version, RANGE_V); /* Pop Unicode characters from the bitstream and print them */ for(int i = 0; i < MAX_MSG_LEN; i++) fwrite_utf8(stdout, index2uni(b.pop(NUM_CHARACTERS))); fprintf(stdout, "\n"); } else { /* Pop points from the bitstream */ for(int i = dw * dh; i--; ) { if(POINTS_PER_CELL == 2) { uint32_t pack = b.pop(RANGE_XY2); int x1, y1, x2, y2; unpack_coords(pack, &x1, &y1, &x2, &y2); points[i * 2 + 1].y = y2; points[i * 2 + 1].x = x2; points[i * 2 + 1].r = b.pop(RANGE_R); points[i * 2 + 1].g = b.pop(RANGE_G); points[i * 2 + 1].b = b.pop(RANGE_B); points[i * 2 + 1].s = b.pop(RANGE_S); points[i * 2].y = y1; points[i * 2].x = x1; points[i * 2].r = b.pop(RANGE_R); points[i * 2].g = b.pop(RANGE_G); points[i * 2].b = b.pop(RANGE_B); points[i * 2].s = b.pop(RANGE_S); } else { points[i].y = b.pop(RANGE_Y); points[i].x = b.pop(RANGE_X); points[i].r = b.pop(RANGE_R); points[i].g = b.pop(RANGE_G); points[i].b = b.pop(RANGE_B); points[i].s = b.pop(RANGE_S); } } npoints = dw * dh * POINTS_PER_CELL; /* Render these points to a new image */ dst = pipi_new(width, height); render(dst, 0, 0, width, height); /* Save image and bail out */ pipi_save(dst, dstname); pipi_free(dst); } return EXIT_SUCCESS; }