#!/usr/bin/env python
import math, gd, random, sys, os
# Select which chapters to run
def chapter(n):
if len(sys.argv) == 1:
return True
return str(n) in sys.argv
##############################################################################
# Tiny image class to make examples short and readable
class Image(gd.image):
gd.gdMaxColors = 256 * 256 * 256
def __init__(self, *args):
if args[0].__class__ == str:
print "[LOAD] %s" % (args[0],)
gd.image.__init__(self, *args)
def save(self, name):
print "[PNG] %s" % (name,)
self.writePng(name)
def getGray(self, x, y):
p = self.getPixel((x, y))
c = self.colorComponents(p)[0] / 255.0
return c
def getRgb(self, x, y):
p = self.getPixel((x, y))
rgb = self.colorComponents(p)
return [rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0]
def setGray(self, x, y, t):
p = (int)(t * 255.999)
c = self.colorResolve((p, p, p))
self.setPixel((x, y), c)
def setRgb(self, x, y, r, g, b):
r = (int)(r * 255.999)
g = (int)(g * 255.999)
b = (int)(b * 255.999)
c = self.colorResolve((r, g, b))
self.setPixel((x, y), c)
def getRegion(self, x, y, w, h):
dest = Image((w, h), True)
self.copyTo(dest, (-x, -y))
return dest
def getZoom(self, z):
(w, h) = self.size()
dest = Image((w * z, h * z), True)
for y in range(h):
for x in range(w):
rgb = self.getRgb(x, y)
for j in range(z):
for i in range(z):
dest.setRgb(x * z + i, y * z + j, *rgb)
return dest
# Manipulate gamma values
class Gamma:
def CtoI(x):
if x < 0:
return - math.pow(-x, 2.2)
return math.pow(x, 2.2)
def ItoC(x):
if x < 0:
return - math.pow(-x, 1 / 2.2)
return math.pow(x, 1 / 2.2)
CtoI = staticmethod(CtoI)
ItoC = staticmethod(ItoC)
def CtoI3(x):
return [Gamma.CtoI(x[0]), Gamma.CtoI(x[1]), Gamma.CtoI(x[2])]
def ItoC3(x):
return [Gamma.ItoC(x[0]), Gamma.ItoC(x[1]), Gamma.ItoC(x[2])]
CtoI3 = staticmethod(CtoI3)
ItoC3 = staticmethod(ItoC3)
def Cto2(x):
if x < Gamma.CtoI(0.50):
return 0.
return 1.
def Cto3(x):
if x < Gamma.CtoI(0.25):
return 0.
elif x < Gamma.CtoI(0.75):
return Gamma.CtoI(0.5)
return 1.
def Cto4(x):
if x < Gamma.CtoI(0.17):
return 0.
elif x < Gamma.CtoI(0.50):
return Gamma.CtoI(0.3333)
elif x < Gamma.CtoI(0.83):
return Gamma.CtoI(0.6666)
return 1.
Cto2 = staticmethod(Cto2)
Cto3 = staticmethod(Cto3)
Cto4 = staticmethod(Cto4)
# Create matrices
def Matrix(w, h, val = 0):
return [[val] * w for n in range(h)]
# Iterate in 2D space
def rangexy(w, h):
for y in range(h):
for x in range(w):
yield (x, y)
##############################################################################
# Create SVG files from matrix data
class Svg:
_data = ''
_w, _h = 0, 0
def _colorise(val):
return '#fff'
def _reduce(this, val):
if type(val) == float:
for x in range(1, 1000):
if abs(val * x - round(val * x)) < 0.001:
return (int)(round(val * x)), x
return val, 1
def __init__(self, mat, colorise = _colorise):
# Check whether it is an error diffusion matrix
ed = False
for l in mat:
for x in l:
if type(x) == str or math.floor(x) != x:
ed = True
# Generate SVG file
(w, h) = (len(mat[0]), len(mat))
s = \
'\n' \
'\n'
self._w = 64 * w + 2
self._h = 64 * h + 2
self._data = s
def save(self, name, size):
svgname = name + ".tmp.svg"
f = open(svgname, 'w')
f.write(self._data)
f.close()
f = os.popen("inkscape %s -a %u:%u:%u:%u -w%u -h%u -e %s >/dev/null 2>&1" % (svgname, 0, 0, self._w, self._h, size * self._w / 64., size * self._h / 64., name))
print "[SVG] %s" % (name,)
f.close()
os.unlink(svgname)
##############################################################################
print "Initialisation"
# Load the original Lena image
lena512 = Image("lena512.png")
(w, h) = lena512.size()
# Image 1: greyscale conversion
# Read the compression FAQ [55] for the rationale behind using the green
# channel (http://www.faqs.org/faqs/compression-faq/part1/section-30.html)
if chapter(0):
(w, h) = lena512.size()
lena512bw = Image((w, h))
for x, y in rangexy(w, h):
rgb = lena512.getRgb(x, y)
c = rgb[1]
lena512bw.setGray(x, y, c)
lena512bw.save("lena512bw.png")
else:
lena512bw = Image("lena512bw.png")
def gammascale(src, scale):
(w, h) = src.size()
count = src.colorsTotal()
dest = Image((w / scale, h / scale), count == 0 or count > 256)
for x, y in rangexy(w / scale, h / scale):
r = g = b = 0.
for i, j in rangexy(scale, scale):
rgb = src.getRgb(x * scale + i, y * scale + j)
r += Gamma.CtoI(rgb[0])
g += Gamma.CtoI(rgb[1])
b += Gamma.CtoI(rgb[2])
r = Gamma.ItoC(r / (scale * scale))
g = Gamma.ItoC(g / (scale * scale))
b = Gamma.ItoC(b / (scale * scale))
dest.setRgb(x, y, r, g, b)
return dest
# Image 2: 50% greyscale
# Image 3: 50% scaling
if chapter(0):
lena256bw = gammascale(lena512bw, 2)
lena256bw.save("lena256bw.png")
lena256 = gammascale(lena512, 2)
lena256.save("lena256.png")
else:
lena256bw = Image("lena256bw.png")
lena256 = Image("lena256.png")
# Create a 32x256 greyscale gradient
if chapter(0):
grad256bw = Image((32, 256))
for x, y in rangexy(32, 256):
grad256bw.setGray(x, 255 - y, y / 255.)
grad256bw.save("gradient256bw.png")
else:
grad256bw = Image("gradient256bw.png")
# Create a 64x256 colour gradient
if chapter(0):
grad256 = Image((64, 256), True)
for x, y in rangexy(64, 256):
grad256.setRgb(x, y, x / 63., (255. - y) / 255, x / 63.)
grad256.save("gradient256.png")
else:
grad256 = Image("gradient256.png")
##############################################################################
if chapter(1):
print "Chapter 1. Colour quantisation"
# Output 1.1.1: 50% threshold
# Output 1.1.2: 40% threshold
# Output 1.1.3: 60% threshold
def test11x(src, threshold):
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y) > threshold
dest.setGray(x, y, c)
return dest
if chapter(1):
test11x(grad256bw, 0.5).save("out/grad1-1-1.png")
test11x(lena256bw, 0.5).save("out/lena1-1-1.png")
test11x(grad256bw, 0.4).save("out/grad1-1-2.png")
test11x(lena256bw, 0.4).save("out/lena1-1-2.png")
test11x(grad256bw, 0.6).save("out/grad1-1-3.png")
test11x(lena256bw, 0.6).save("out/lena1-1-3.png")
# Output 1.2.1: 3-colour threshold
# Output 1.2.2: 5-colour threshold
def test12x(src, colors):
(w, h) = src.size()
dest = Image((w, h))
q = colors - 1
p = -.00001 + colors
for x, y in rangexy(w, h):
c = src.getGray(x, y)
c = math.floor(c * p) / q
dest.setGray(x, y, c)
return dest
if chapter(1):
test12x(grad256bw, 3).save("out/grad1-2-1.png")
test12x(lena256bw, 3).save("out/lena1-2-1.png")
test12x(grad256bw, 5).save("out/grad1-2-2.png")
test12x(lena256bw, 5).save("out/lena1-2-2.png")
# Output 1.2.3: 3-colour threshold, minimal error
# Output 1.2.4: 5-colour threshold, minimal error
def test12y(src, colors):
(w, h) = src.size()
dest = Image((w, h))
q = colors - 1
p = -.00001 + colors - 1
for x, y in rangexy(w, h):
c = src.getGray(x, y)
c = math.floor((c + 0.5 / p) * p) / q
dest.setGray(x, y, c)
return dest
if chapter(1):
test12y(grad256bw, 3).save("out/grad1-2-3.png")
test12y(lena256bw, 3).save("out/lena1-2-3.png")
test12y(grad256bw, 5).save("out/grad1-2-4.png")
test12y(lena256bw, 5).save("out/lena1-2-4.png")
# Output 1.3.1: 2-colour threshold, dynamic thresholding
# Output 1.3.2: 5-colour threshold, dynamic thresholding
def test13x(src, n, fuzzy = None):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
# Compute histogram
histo = [0] * 256
for x, y in rangexy(w, h):
histo[(int)(src.getGray(x, y) * 255.9999)] += 1
thresholds = [1. * (1. + i) / n for i in range(n - 1)]
values = [i / (n - 1.) for i in range(n)]
# Parse histogram
total = 0
t = 0
for i in range(256):
total += histo[i]
if total > thresholds[t] * w * h:
thresholds[t] = i / 255.0
t += 1
if t + 1 > n - 1:
break
# Compute image
for x, y in rangexy(w, h):
c = src.getGray(x, y)
for (i, t) in enumerate(thresholds):
if fuzzy:
t += fuzzy()
if c < t:
dest.setGray(x, y, values[i])
break
else:
dest.setGray(x, y, values[n - 1])
return dest
if chapter(1):
test13x(grad256bw, 2).save("out/grad1-3-1.png")
test13x(lena256bw, 2).save("out/lena1-3-1.png")
test13x(grad256bw, 5).save("out/grad1-3-2.png")
test13x(lena256bw, 5).save("out/lena1-3-2.png")
# Output 1.4.1: uniform random dithering
def test141(src):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y)
d = c > random.random()
dest.setGray(x, y, d)
return dest
if chapter(1):
test141(grad256bw).save("out/grad1-4-1.png")
test141(lena256bw).save("out/lena1-4-1.png")
# Output 1.4.2: gaussian random dithering
def test142(src):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y)
d = c > random.gauss(0.5, 0.15)
dest.setGray(x, y, d)
return dest
if chapter(1):
test142(grad256bw).save("out/grad1-4-2.png")
test142(lena256bw).save("out/lena1-4-2.png")
# Output 1.4.3: 3-colour threshold, dynamic thresholding, gaussian perturbation
if chapter(1):
fuzzy = lambda : random.gauss(0., 0.08)
test13x(grad256bw, 4, fuzzy).save("out/grad1-4-3.png")
test13x(lena256bw, 4, fuzzy).save("out/lena1-4-3.png")
##############################################################################
if chapter(2):
print "Chapter 2. Halftoning patterns"
# Pattern 2.1.1: a 50% halftone pattern with various block sizes
# Pattern 2.1.2: 25% and 75% halftone patterns with various block sizes
if chapter(2):
dest = Image((320, 80))
for x in range(320):
d = 8 >> (x / 80)
for y in range(80):
c = (x / d + y / d) & 1
dest.setGray(x, y, c)
dest.save("out/pat2-1-1.png")
dest = Image((320, 80))
for x in range(320):
d = 8 >> (x / 80)
for y in range(40):
c = ((x / d + y / d) & 1) or (y / d & 1)
dest.setGray(x, y, c)
for y in range(40, 80):
c = ((x / d + y / d) & 1) and (y / d & 1)
dest.setGray(x, y, c)
dest.save("out/pat2-1-2.png")
# Output 2.1.1: 20/40/60/80% threshold with 25/50/75% patterns inbetween:
def test211(src):
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y)
if c < 0.2:
c = 0.
elif c < 0.4:
c = ((x + y) & 1) and (y & 1)
elif c < 0.6:
c = (x + y) & 1
elif c < 0.8:
c = ((x + y) & 1) or (y & 1)
else:
c = 1.
dest.setGray(x, y, c)
return dest
if chapter(2):
test211(grad256bw).save("out/grad2-1-1.png")
test211(lena256bw).save("out/lena2-1-1.png")
# Pattern 2.2.1: vertical, mixed and horizontal black-white halftones
# Pattern 2.2.2: two different 25% patterns
if chapter(2):
dest = Image((240, 80))
for y in range(80):
for x in range(80):
c = x & 1
dest.setGray(x, y, c)
for x in range(80, 160):
c = (x / d + y / d) & 1
dest.setGray(x, y, c)
for x in range(160, 240):
c = y & 1
dest.setGray(x, y, c)
dest.save("out/pat2-2-1.png")
dest = Image((320, 80))
for y in range(80):
for x in range(80):
c = (x / 2 & 1) and (y / 2 & 1)
dest.setGray(x, y, c)
for x in range(80, 160):
c = (x & 1) and (y & 1)
dest.setGray(x, y, c)
for x in range(160, 240):
c = (x & 1) and ((y + x / 2) & 1)
dest.setGray(x, y, c)
for x in range(240, 320):
c = (x / 2 & 1) and ((y / 2 + x / 4) & 1)
dest.setGray(x, y, c)
dest.save("out/pat2-2-2.png")
# Output 2.3.0: 2x2 Bayer dithering
# Output 2.3.1: 4x4 Bayer dithering
# Output 2.3.1b: 8x8 Bayer dithering
# Output 2.3.2: 4x4 cluster dot
# Output 2.3.2b: 8x8 cluster dot
# Output 2.3.3: 5x3 line dithering
def ordereddither(src, mat):
(w, h) = src.size()
dest = Image((w, h))
dx = len(mat[0])
dy = len(mat)
for x, y in rangexy(w, h):
c = src.getGray(x, y)
threshold = (1. + mat[y % dy][x % dx]) / (dx * dy + 1)
c = c > threshold
dest.setGray(x, y, c)
return dest
def makebayer(rank, mat = False):
if not mat:
mat = Matrix(1, 1)
if not rank:
return mat
n = len(mat)
newmat = Matrix(n * 2, n * 2)
for i, j in rangexy(n, n):
x = mat[j][i]
newmat[j * 2][i * 2] = x
newmat[j * 2][i * 2 + 1] = x + n * n * 3
newmat[j * 2 + 1][i * 2] = x + n * n * 2
newmat[j * 2 + 1][i * 2 + 1] = x + n * n
return makebayer(rank - 1, newmat)
DITHER_BAYER22 = makebayer(1)
DITHER_BAYER44 = makebayer(2)
DITHER_BAYER88 = makebayer(3)
DITHER_CLUSTER44 = \
[[ 12, 5, 6, 13],
[ 4, 0, 1, 7],
[ 11, 3, 2, 8],
[ 15, 10, 9, 14]]
DITHER_CLUSTER88 = \
[[ 24, 10, 12, 26, 35, 47, 49, 37],
[ 8, 0, 2, 14, 45, 59, 61, 51],
[ 22, 6, 4, 16, 43, 57, 63, 53],
[ 30, 20, 18, 28, 33, 41, 55, 39],
[ 34, 46, 48, 36, 25, 11, 13, 27],
[ 44, 58, 60, 50, 9, 1, 3, 15],
[ 42, 56, 62, 52, 23, 7, 5, 17],
[ 32, 40, 54, 38, 31, 21, 19, 29]]
DITHER_LINE53 = \
[[ 9, 3, 0, 6, 12],
[ 10, 4, 1, 7, 13],
[ 11, 5, 2, 8, 14]]
def bayercol(val): return ['#fdf', '#dfd', '#ffd', '#dff'][val % 4]
if chapter(2):
ordereddither(grad256bw, DITHER_BAYER22).save("out/grad2-3-0.png")
ordereddither(lena256bw, DITHER_BAYER22).save("out/lena2-3-0.png")
Svg(DITHER_BAYER44, bayercol).save("out/fig2-3-2.png", 40)
ordereddither(grad256bw, DITHER_BAYER44).save("out/grad2-3-1.png")
ordereddither(lena256bw, DITHER_BAYER44).save("out/lena2-3-1.png")
Svg(DITHER_BAYER88, bayercol).save("out/fig2-3-2b.png", 30)
ordereddither(grad256bw, DITHER_BAYER88).save("out/grad2-3-1b.png")
ordereddither(lena256bw, DITHER_BAYER88).save("out/lena2-3-1b.png")
Svg(DITHER_CLUSTER44).save("out/fig2-3-3.png", 40)
ordereddither(grad256bw, DITHER_CLUSTER44).save("out/grad2-3-2.png")
ordereddither(lena256bw, DITHER_CLUSTER44).save("out/lena2-3-2.png")
Svg(DITHER_CLUSTER88).save("out/fig2-3-3b.png", 30)
ordereddither(grad256bw, DITHER_CLUSTER88).save("out/grad2-3-2b.png")
ordereddither(lena256bw, DITHER_CLUSTER88).save("out/lena2-3-2b.png")
Svg(DITHER_LINE53).save("out/fig2-3-4.png", 40)
ordereddither(grad256bw, DITHER_LINE53).save("out/grad2-3-3.png")
ordereddither(lena256bw, DITHER_LINE53).save("out/lena2-3-3.png")
# Output 2.4.1: 4x4 Bayer dithering with gaussian perturbation
def test241(src, mat):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
dx = len(mat[0])
dy = len(mat)
for x, y in rangexy(w, h):
c = src.getGray(x, y)
threshold = (1. + mat[y % dy][x % dx]) / (dx * dy + 1)
threshold += random.gauss(0, 0.08)
c = c > threshold
dest.setGray(x, y, c)
return dest
if chapter(2):
test241(grad256bw, DITHER_BAYER88).save("out/grad2-4-1.png")
test241(lena256bw, DITHER_BAYER88).save("out/lena2-4-1.png")
# Output 2.4.2: random dither matrice selection
def test242(src, mlist):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
dx = len(mlist[0][0])
dy = len(mlist[0])
for x, y in rangexy(w / dx, h / dy):
mat = random.choice(mlist)
for i, j in rangexy(dx, dy):
c = src.getGray(x * dx + i, y * dy + j)
threshold = (1. + mat[j][i]) / (dx * dy + 1)
d = c > threshold
dest.setGray(x * dx + i, y * dy + j, d)
return dest
if chapter(2):
m1 = [[1, 4, 7],
[6, 0, 2],
[3, 8, 5]]
m2 = [[4, 6, 3],
[8, 1, 5],
[0, 3, 7]]
m3 = [[5, 0, 3],
[2, 8, 6],
[7, 4, 1]]
m4 = [[8, 2, 5],
[6, 4, 0],
[1, 7, 3]]
m5 = [[2, 5, 8],
[0, 7, 3],
[4, 1, 6]]
m6 = [[7, 4, 1],
[3, 6, 8],
[2, 0, 5]]
mlist = [m1, m2, m3, m4, m5, m6]
test242(grad256bw, mlist).save("out/grad2-4-2.png")
test242(lena256bw, mlist).save("out/lena2-4-2.png")
# Output 2.5.1: cross pattern
# Output 2.5.2: hex pattern
# Output 2.5.3: square pattern
def test25x(src, mat, vec):
# 1. count positive cells
n = 0
for line in mat:
for x in line:
if x >= 0:
n += 1
# 2. create list of vectors
l = []
x = y = 0
while (x, y) not in l:
l.append((x, y))
(x, y) = ((x + vec[0][0]) % n, (y + vec[0][1]) % n)
if (x, y) in l:
(x, y) = ((x + vec[1][0]) % n, (y + vec[1][1]) % n)
# 3. create big matrix
m = Matrix(n, n)
for v in l:
for x, y in rangexy(len(mat[0]), len(mat)):
if mat[y][x] < 0:
continue
m[(v[1] + y + n) % n][(v[0] + x + n) % n] = mat[y][x]
# 4. dither image
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y)
threshold = (1. + m[y % n][x % n]) / (1. + n)
d = c > threshold
dest.setGray(x, y, d)
return dest
if chapter(2):
mat = [[-1, 4, -1],
[ 3, 0, 1],
[-1, 2, -1]]
vec = [(2, -1), (1, 2)]
test25x(grad256bw, mat, vec).save("out/grad2-5-1.png")
test25x(lena256bw, mat, vec).save("out/lena2-5-1.png")
mat = [[-1, 4, 2, -1],
[ 6, 0, 5, 3],
[-1, 7, 1, -1]]
vec = [(2, -2), (3, 1)]
test25x(grad256bw, mat, vec).save("out/grad2-5-2.png")
test25x(lena256bw, mat, vec).save("out/lena2-5-2.png")
mat = [[-1, -1, -1, 7, -1],
[-1, 2, 6, 9, 8],
[ 3, 0, 1, 5, -1],
[-1, 4, -1, -1, -1]]
vec = [(2, 4), (3, 1)]
test25x(grad256bw, mat, vec).save("out/grad2-5-3.png")
test25x(lena256bw, mat, vec).save("out/lena2-5-3.png")
mat = [[-1, -1, 2, -1],
[ 0, 1, 3, 8],
[ 5, 4, 7, 6],
[-1, 9, -1, -1]]
vec = [(2, 2), (0, 5)]
test25x(grad256bw, mat, vec).save("out/grad2-5-4.png")
test25x(lena256bw, mat, vec).save("out/lena2-5-4.png")
# Output 2.6.1: 4-wise cross pattern
# Output 2.6.2: 3-wise hex pattern
# Output 2.6.3: 4-wise square pattern
if chapter(2):
mat = [[-1, -1, -1, 18, -1, -1],
[-1, 16, 14, 2, 6, -1],
[12, 0, 4, 10, 17, -1],
[-1, 8, 19, 13, 1, 5],
[-1, 15, 3, 7, 9, -1],
[-1, -1, 11, -1, -1, -1]]
vec = [(4, -2), (2, 4)]
test25x(grad256bw, mat, vec).save("out/grad2-6-1.png")
test25x(lena256bw, mat, vec).save("out/lena2-6-1.png")
mat = [[-1, 12, 6, -1, -1, -1, -1],
[18, 0, 15, 9, 14, 8, -1],
[-1, 21, 3, 20, 2, 17, 11],
[-1, -1, 13, 7, 23, 5, -1],
[-1, 19, 1, 16, 10, -1, -1],
[-1, -1, 22, 4, -1, -1, -1]]
vec = [(5, -1), (-1, 5)]
test25x(grad256bw, mat, vec).save("out/grad2-6-2.png")
test25x(lena256bw, mat, vec).save("out/lena2-6-2.png")
mat = [[-1, -1, -1, -1, 30, -1, -1, -1, -1],
[-1, -1, 10, 26, 38, 34, -1, 29, -1],
[-1, 14, 2, 6, 22, 9, 25, 37, 33],
[-1, -1, 18, 28, 13, 1, 5, 21, -1],
[-1, 8, 24, 36, 32, 17, 31, -1, -1],
[12, 0, 4, 20, 11, 27, 39, 35, -1],
[-1, 16, -1, 15, 3, 7, 23, -1, -1],
[-1, -1, -1, -1, 19, -1, -1, -1, -1]]
vec = [(6, 2), (-2, 6)]
test25x(grad256bw, mat, vec).save("out/grad2-6-3.png")
test25x(lena256bw, mat, vec).save("out/lena2-6-3.png")
mat = [[-1, -1, 3, 35, -1, -1, 1, 33, -1, -1, -1, -1, -1],
[-1, -1, -1, 19, 51, -1, -1, 17, 49, -1, -1, -1, -1],
[ 7, 39, 11, 43, 5, 37, 9, 41, -1, -1, -1, -1, -1],
[-1, 23, 55, 27, 59, 21, 53, 25, 57, -1, -1, -1, -1],
[15, 47, -1, -1, 13, 45, 2, 34, -1, -1, 0, 32, -1],
[-1, 31, 63, -1, -1, 29, 61, 18, 50, -1, -1, 16, 48],
[-1, -1, -1, -1, 6, 38, 10, 42, 4, 36, 8, 40, -1],
[-1, -1, -1, -1, -1, 22, 54, 26, 58, 20, 52, 24, 56],
[-1, -1, -1, -1, 14, 46, -1, -1, 12, 44, -1, -1, -1],
[-1, -1, -1, -1, -1, 30, 62, -1, -1, 28, 60, -1, -1]]
vec = [(8, 0), (0, 8)]
def colorise(val):
if val == 0: return '#fff'
if (val % 64) == 32: return '#ddf'
if (val % 32) == 16: return '#fdd'
if (val % 16) == 8: return '#dff'
if (val % 8) == 4: return '#ffd'
if (val % 4) == 2: return '#fdf'
return '#dfd'
Svg(mat, colorise).save("out/fig2-6-4.png", 25)
test25x(grad256bw, mat, vec).save("out/grad2-6-4.png")
test25x(lena256bw, mat, vec).save("out/lena2-6-4.png")
mat = [[ -1, -1, -1, -1, -1, -1, 8, -1],
[ -1, -1, 6, -1, 2, 5, 11, 26],
[ 0, 3, 9, 24, 17, 14, 23, 20],
[ 15, 12, 21, 18, 7, 29, -1, -1],
[ -1, 27, 1, 4, 10, 25, -1, -1],
[ -1, -1, 16, 13, 22, 19, -1, -1],
[ -1, -1, -1, 28, -1, -1, -1, -1]]
vec = [(6, 1), (0, 5)]
def colorise(val): return ['#dff', '#ffd', '#fdf'][val % 3]
#Svg(mat, colorise).save("out/fig2-6-5.png", 30)
test25x(grad256bw, mat, vec).save("out/grad2-6-5.png")
test25x(lena256bw, mat, vec).save("out/lena2-6-5.png")
mat = [[ -1, -1, -1, -1, -1, -1, 24, -1, -1, -1, -1, -1, -1, -1],
[ -1, -1, 18, -1, 6, 15, 33, 78, -1, -1, -1, -1, 26, -1],
[ 0, 9, 27, 72, 51, 42, 69, 60, 20, -1, 8, 17, 35, 80],
[ 45, 36, 63, 54, 21, 87, 2, 11, 29, 74, 53, 44, 71, 62],
[ -1, 81, 3, 12, 30, 75, 47, 38, 65, 56, 23, 89, -1, -1],
[ -1, -1, 48, 39, 66, 57, 25, 83, 5, 14, 32, 77, -1, -1],
[ -1, -1, 19, 84, 7, 16, 34, 79, 50, 41, 68, 59, -1, -1],
[ 1, 10, 28, 73, 52, 43, 70, 61, -1, 86, -1, -1, -1, -1],
[ 46, 37, 64, 55, 22, 88, -1, -1, -1, -1, -1, -1, -1, -1],
[ -1, 82, 4, 13, 31, 76, -1, -1, -1, -1, -1, -1, -1, -1],
[ -1, -1, 49, 40, 67, 58, -1, -1, -1, -1, -1, -1, -1, -1],
[ -1, -1, -1, 85, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]]
test25x(grad256bw, mat, vec).save("out/grad2-6-6.png")
test25x(lena256bw, mat, vec).save("out/lena2-6-6.png")
# Output 2.7.1: void and cluster matrix generation
def makegauss(n):
c = (-1. + n) / 2
mat = Matrix(n, n)
for x, y in rangexy(n, n):
mat[y][x] = math.exp(- ((c - x) * (c - x) + (c - y) * (c - y)) / (0.05 * n * n))
return mat
def countones(mat):
total = 0
for l in mat:
for x in l:
if x:
total += 1
return total
GAUSS77 = makegauss(7)
GAUSS99 = makegauss(9)
def getminmax(mat, c):
min = 9999.
max = 0.
h = len(mat)
w = len(mat[0])
for x, y in rangexy(w, h):
if mat[y][x] != c:
continue
total = 0.
for i, j in rangexy(7, 7):
total += mat[(y + j - 3 + h) % h][(x + i - 3 + w) % w] \
* GAUSS77[j][i]
if total > max:
(max, max_x, max_y) = (total, x, y)
if total < min:
(min, min_x, min_y) = (total, x, y)
return (min_x, min_y, max_x, max_y)
def makeuniform(n):
random.seed(0)
mat = Matrix(n, n)
for t in range(n * n / 10):
x = (int)(random.random() * n)
y = (int)(random.random() * n)
mat[y][x] = 1
while True:
(dummy0, dummy1, x, y) = getminmax(mat, 1.)
mat[y][x] = 0.
(x2, y2, dummy0, dummy1) = getminmax(mat, 0.)
mat[y2][x2] = 1.
if x2 == x and y2 == y:
break
return mat
def makevoidandcluster(n):
vnc = Matrix(n, n)
# Step 1: step down to zero
mat = makeuniform(n)
rank = countones(mat)
while rank > 0:
rank -= 1
(dummy0, dummy1, x, y) = getminmax(mat, 1.)
mat[y][x] = 0.
vnc[y][x] = rank
# Step 2: step up to n * n
mat = makeuniform(n)
rank = countones(mat)
while rank < n * n:
(x, y, dummy0, dummy1) = getminmax(mat, 0.)
mat[y][x] = 1.
vnc[y][x] = rank
rank += 1
return vnc
def vnccol(n):
return lambda val : ['#fff', '#ddd'][val < n * n / 10]
if chapter(2):
tmp = makevoidandcluster(14)
Svg(tmp, vnccol(14)).save("out/fig2-7-1.png", 25)
ordereddither(grad256bw, tmp).save("out/grad2-7-1.png")
ordereddither(lena256bw, tmp).save("out/lena2-7-1.png")
tmp = makevoidandcluster(25)
Svg(tmp, vnccol(25)).save("out/fig2-7-2.png", 20)
ordereddither(grad256bw, tmp).save("out/grad2-7-2.png")
ordereddither(lena256bw, tmp).save("out/lena2-7-2.png")
##############################################################################
if chapter(3):
print "Chapter 3. Error diffusion"
# Output 3.0.1: naive error diffusion
# Output 3.1.1: standard Floyd-Steinberg
# Output 3.1.2: serpentine Floyd-Steinberg
# FIXME: serpentine only works if rows == offset * 2 + 1
# Output 3.2.1: Fan (modified Floyd-Steinberg)
# Output 3.2.1b: Shiau-Fan 1
# Output 3.2.1c: Shiau-Fan 2
# Output 3.2.2: Jarvis, Judice and Ninke
# Output 3.2.3: Stucki
# Output 3.2.4: Burkes
# Output 3.2.5: Sierra
# Output 3.2.6: Two-line Sierra
# Output 3.2.7: Sierra's Filter Lite
# Output 3.2.8: Atkinson
def test3xx(src, mat, serpentine):
(w, h) = src.size()
dest = Image((w, h))
lines = len(mat)
rows = len(mat[0])
offset = mat[0].index(-1)
ey = Matrix(w + rows - 1, lines, 0.)
for y in range(h):
ex = [0.] * (rows - offset)
if serpentine and y & 1:
xrange = range(w - 1, -1, -1)
else:
xrange = range(w)
for x in xrange:
# Set pixel
c = src.getGray(x, y) + ex[0] + ey[0][x + offset]
d = c > 0.5
dest.setGray(x, y, d)
error = c - d
# Propagate first line of error
for dx in range(rows - offset - 2):
ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
ex[rows - offset - 2] = error * mat[0][rows - 1]
# Propagate next lines
if serpentine and y & 1:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
else:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][dx]
for dy in range(lines - 1):
ey[dy] = ey[dy + 1]
ey[lines - 1] = [0.] * (w + rows - 1)
return dest
ERROR_NAIVE = \
[[ -1, 1]]
ERROR_FSTEIN = \
[[ 0., -1, 7./16],
[ 3./16, 5./16, 1./16]]
ERROR_JAJUNI = \
[[ 0., 0., -1, 7./48, 5./48],
[ 3./48, 5./48, 7./48, 5./48, 3./48],
[ 1./48, 3./48, 5./48, 3./48, 1./48]]
ERROR_FAN = \
[[ 0., 0., -1, 7./16],
[ 1./16, 3./16, 5./16, 0.]]
ERROR_SHIAUFAN = \
[[ 0., 0., -1, 8./16],
[ 2./16, 2./16, 4./16, 0.]]
ERROR_SHIAUFAN2 = \
[[ 0., 0., 0., -1, 8./16],
[ 1./16, 1./16, 2./16, 4./16, 0.]]
ERROR_STUCKI = \
[[ 0., 0., -1, 8./42, 4./42],
[ 2./42, 4./42, 8./42, 4./42, 2./42],
[ 1./42, 2./42, 4./42, 2./42, 1./42]]
ERROR_BURKES = \
[[ 0., 0., -1, 8./32, 4./32],
[ 2./32, 4./32, 8./32, 4./32, 2./32]]
ERROR_SIERRA = \
[[ 0., 0., -1, 5./32, 3./32],
[ 2./32, 4./32, 5./32, 4./32, 2./32],
[ 0., 2./32, 3./32, 2./32, 0.]]
ERROR_SIERRA2 = \
[[ 0., 0., -1, 4./16, 3./16],
[ 1./16, 2./16, 3./16, 2./16, 1./16]]
ERROR_FILTERLITE = \
[[ 0., -1, 2./4],
[ 1./4, 1./4, 0.]]
ERROR_ATKINSON = \
[[ 0., -1, 1./8, 1./8],
[ 1./8, 1./8, 1./8, 0.],
[ 0., 1./8, 0., 0.]]
## This is Stevenson-Arce in hex lattice
#ERROR_STAR = \
# [[ 0., 0., 0., -1, 0., 32./200, 0.],
# [ 12./200, 0., 26./200, 0., 30./200, 0., 16./200],
# [ 0., 12./200, 0., 26./200, 0., 12./200, 0.],
# [ 5./200, 0., 12./200, 0., 12./200, 0., 5./200]]
## This is an attempt at implementing Stevenson-Arce in square lattice
#ERROR_STAR = \
# [[ 0., 0., -1, 32./200, 0.],
# [ 6./200, 19./200, 28./200, 23./200, 8./200],
# [ 0., 12./200, 26./200, 12./200, 0.],
# [ 2./200, 9./200, 12./200, 9./200, 2./200]]
if chapter(3):
test3xx(grad256bw, ERROR_NAIVE, False).save("out/grad3-0-1.png")
test3xx(lena256bw, ERROR_NAIVE, False).save("out/lena3-0-1.png")
Svg(ERROR_FSTEIN).save("out/fig3-1-1.png", 40)
test3xx(grad256bw, ERROR_FSTEIN, False).save("out/grad3-1-1.png")
test3xx(lena256bw, ERROR_FSTEIN, False).save("out/lena3-1-1.png")
test3xx(grad256bw, ERROR_FSTEIN, True).save("out/grad3-1-2.png")
test3xx(lena256bw, ERROR_FSTEIN, True).save("out/lena3-1-2.png")
Svg(ERROR_JAJUNI).save("out/fig3-1-3.png", 40)
test3xx(grad256bw, ERROR_JAJUNI, False).save("out/grad3-1-3.png")
test3xx(lena256bw, ERROR_JAJUNI, False).save("out/lena3-1-3.png")
Svg(ERROR_FAN).save("out/fig3-2-1.png", 40)
test3xx(grad256bw, ERROR_FAN, False).save("out/grad3-2-1.png")
test3xx(lena256bw, ERROR_FAN, False).save("out/lena3-2-1.png")
Svg(ERROR_SHIAUFAN).save("out/fig3-2-1b.png", 40)
test3xx(grad256bw, ERROR_SHIAUFAN, False).save("out/grad3-2-1b.png")
test3xx(lena256bw, ERROR_SHIAUFAN, False).save("out/lena3-2-1b.png")
Svg(ERROR_SHIAUFAN2).save("out/fig3-2-1c.png", 40)
test3xx(grad256bw, ERROR_SHIAUFAN2, False).save("out/grad3-2-1c.png")
test3xx(lena256bw, ERROR_SHIAUFAN2, False).save("out/lena3-2-1c.png")
Svg(ERROR_STUCKI).save("out/fig3-2-3.png", 40)
test3xx(grad256bw, ERROR_STUCKI, False).save("out/grad3-2-3.png")
test3xx(lena256bw, ERROR_STUCKI, False).save("out/lena3-2-3.png")
Svg(ERROR_BURKES).save("out/fig3-2-4.png", 40)
test3xx(grad256bw, ERROR_BURKES, False).save("out/grad3-2-4.png")
test3xx(lena256bw, ERROR_BURKES, False).save("out/lena3-2-4.png")
Svg(ERROR_SIERRA).save("out/fig3-2-5.png", 40)
test3xx(grad256bw, ERROR_SIERRA, False).save("out/grad3-2-5.png")
test3xx(lena256bw, ERROR_SIERRA, False).save("out/lena3-2-5.png")
Svg(ERROR_SIERRA2).save("out/fig3-2-6.png", 40)
test3xx(grad256bw, ERROR_SIERRA2, False).save("out/grad3-2-6.png")
test3xx(lena256bw, ERROR_SIERRA2, False).save("out/lena3-2-6.png")
Svg(ERROR_FILTERLITE).save("out/fig3-2-7.png", 40)
test3xx(grad256bw, ERROR_FILTERLITE, False).save("out/grad3-2-7.png")
test3xx(lena256bw, ERROR_FILTERLITE, False).save("out/lena3-2-7.png")
Svg(ERROR_ATKINSON).save("out/fig3-2-8.png", 40)
test3xx(grad256bw, ERROR_ATKINSON, False).save("out/grad3-2-8.png")
test3xx(lena256bw, ERROR_ATKINSON, False).save("out/lena3-2-8.png")
#test3xx(grad256bw, ERROR_STAR, False).save("out/grad3-2-9.png")
#test3xx(lena256bw, ERROR_STAR, False).save("out/lena3-2-9.png")
#test3xx(grad256bw, ERROR_STAR, False).save("out/grad3-2-9.png")
#test3xx(lena256bw, ERROR_STAR, False).save("out/lena3-2-9.png")
# Output 3.3.1: Floyd-Steinberg on grey 90%
# Output 3.3.2: serpentine Floyd-Steinberg on grey 90%
if chapter(3):
tmp = Image((128, 128))
for x, y in rangexy(128, 128):
tmp.setGray(x, y, 0.90)
test3xx(tmp, ERROR_FSTEIN, True).getZoom(2).save("out/lena3-3-2.png")
test3xx(tmp, ERROR_FSTEIN, False).getZoom(2).save("out/lena3-3-1.png")
# Output 3.3.3: Riemersma dither on a Hilbert curve
# Output 3.3.4: Riemersma dither on a Hilbert 2 curve
def hilbert(x, y, n):
d1 = [0, 4, 3, 2, 1]
d2 = [0, 3, 4, 1, 2]
m = n/2
if x == n - 1 and y == 0: return 0
if x == 0 and y == m - 1: return 1
if x == m - 1 and y == m: return 4
if x == n - 1 and y == m: return 2
if y >= m: return hilbert(x % m, y - m, m)
if x < m: return d1[hilbert(y, x, m)]
else: return d2[hilbert(m - 1 - y, n - 1 - x, m)]
def hilbert2(x, y, n):
d1 = [0, 2, 1, 3, 4]
d2 = [0, 1, 2, 4, 3]
d3 = [0, 2, 1, 4, 3]
m = n/3
if x == n - 1 and y == n - 1: return 0
if x == m - 1 and y == m - 1: return 4
if x == 2 * m - 1 and y == 0: return 4
if x == n - 1 and y == m - 1: return 1
if x == 0 and y == 2 * m - 1: return 1
if x == m and y == m: return 3
if x == m * 2 and y == m * 2 - 1: return 3
if x == m - 1 and y == n - 1: return 4
if x == 2 * m - 1 and y == 2 * m: return 4
if (x < m or x >= m * 2) and (y < m or y >= m * 2):
return hilbert2(x % m, y % m, m)
if x >= m and x < m * 2 and y >= m and y < m * 2:
return d3[hilbert2(2 * m - 1 - x, 2 * m - 1 - y, m)]
if x >= m and x < m * 2:
return d1[hilbert2(x - m, m - 1 - (y % m), m)]
else: # if y >= m and y < m * 2
return d2[hilbert2(m - 1 - (x % m), y - m, m)]
def riemersma(src, iterator, order):
(w, h) = src.size()
dest = Image((w, h))
q = 16
r = 16
size = 1
while size < w or size < h: size *= order
coord = [(0, 0), (0, 1), (0, -1), (-1, 0), (1, 0)]
err = [0] * q
list = [math.exp(math.log(r) * i / (q - 1)) / r for i in range(q)]
(x, y) = (0, 0)
out = False
while True:
if not out:
a = c = src.getGray(x, y)
for i in range(q):
a += err[i] * list[i]
d = a > 0.5
dest.setGray(x, y, d)
for i in range(q - 1):
err[i] = err[i + 1]
err[q - 1] = c - d
t = iterator(x, y, size)
if t == 0:
break
dx, dy = coord[t]
x += dx
y += dy
if out:
if x < w and y < h:
err = [0] * q
out = False
continue
# Did we fall off the screen?
out = (x > w + q or y > h + q)
return dest
if chapter(3):
riemersma(grad256bw, hilbert, 2).save("out/grad3-3-3.png")
riemersma(lena256bw, hilbert, 2).save("out/lena3-3-3.png")
riemersma(grad256bw, hilbert2, 3).save("out/grad3-3-4.png")
riemersma(lena256bw, hilbert2, 3).save("out/lena3-3-4.png")
# Output 3.3.5: spatial Hilbert dither on a Hilbert curve
# Output 3.3.6: spatial Hilbert dither on a Hilbert 2 curve
def spatialhilbert(src, iterator, order):
(w, h) = src.size()
dest = Image((w, h))
q = 16
size = 1
while size < w or size < h: size *= order
coord = [(0, 0), (0, 1), (0, -1), (-1, 0), (1, 0)]
err = [0] * q
dx = [0] * q
dy = [0] * q
dist = [0] * q
(x, y) = (0, 0)
out = False
while True:
if not out:
c = src.getGray(x, y) + err[0]
d = c > 0.5
dest.setGray(x, y, d)
t = iterator(x, y, size)
if t == 0:
break
dx[0], dy[0] = coord[t]
if not out:
error = c - d
errdiv = 0.
for i in range(q - 1):
t = coord[iterator(x + dx[i], y + dy[i], size)]
dx[i + 1] = dx[i] + t[0]
dy[i + 1] = dy[i] + t[1]
for i in range(q):
dist[i] = dx[i] * dx[i] + dy[i] * dy[i]
errdiv += 1. / dist[i]
error /= errdiv
for i in range(q - 1):
err[i] = err[i + 1] + error / dist[i]
err[q - 1] = error / dist[q - 1]
x += dx[0]
y += dy[0]
if out:
if x < w and y < h:
err = [0] * q
out = False
continue
# Did we fall off the screen?
out = (x > w + q or y > h + q)
return dest
if chapter(3):
spatialhilbert(grad256bw, hilbert, 2).save("out/grad3-3-5.png")
spatialhilbert(lena256bw, hilbert, 2).save("out/lena3-3-5.png")
spatialhilbert(grad256bw, hilbert2, 3).save("out/grad3-3-6.png")
spatialhilbert(lena256bw, hilbert2, 3).save("out/lena3-3-6.png")
# Output 3.3.7: Knuth's dot diffusion
# Output 3.3.8: Knuth's dot diffusion, sharpen = 0.9
# Output 3.3.9: Knuth's dot diffusion, sharpen = 0.9, zeta = 0.2
# Output 3.3.10: serpentine Floyd-Steinberg, sharpen = 0.9
def sharpen(src, sharpening):
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y)
total = 0.
for j in range(-1, 2):
for i in range(-1, 2):
total += src.getGray(x + i, y + j)
total /= 9.
d = (c - sharpening * total) / (1.0 - sharpening)
if d < 0.:
d = 0.
elif d > 1.:
d = 1.
dest.setGray(x, y, d)
return dest
def test337(src, mat, propagate, zeta):
(w, h) = src.size()
dest = Image((w, h))
dx = len(mat[0])
dy = len(mat)
# 0. analyse diffusion matrix to speed up things later
diff = []
cx, cy = -1, -1
for x, y in rangexy(len(propagate[0]), len(propagate)):
if propagate[y][x] == -1:
cx, cy = x, y
for x, y in rangexy(len(propagate[0]), len(propagate)):
diff.append((x - cx, y - cy, propagate[y][x]))
# 1. analyse order matrix to get equivalence classes
nclasses = 0
for l in mat:
for v in l:
if v + 1 > nclasses:
nclasses = v + 1
classes = [[] for n in range(nclasses)]
for x, y in rangexy(w, h):
classes[mat[y % dy][x % dx]].append((x, y))
# 2. copy image
img = [[src.getGray(x, y) for x in range(w)] for y in range(h)]
aa = Matrix(w, h, 1.)
# 3. parse all classes
for l in classes:
for x, y in l:
c = img[y][x]
if aa[y][x] == 1.:
error = c + 4. * zeta
else:
error = c - zeta
if x > 0 and aa[y][x-1] == 1.: error += zeta
if y > 0 and aa[y-1][x] == 1.: error += zeta
if x < w-1 and aa[y][x+1] == 1.: error += zeta
if y < h-1 and aa[y+1][x] == 1.: error += zeta
if c + error < 1.:
aa[y][x] = 0.
if x > 0 and aa[y][x-1] == 1.: aa[y][x-1] = .5
if y > 0 and aa[y-1][x] == 1.: aa[y-1][x] = .5
if x < w-1 and aa[y][x+1] == 1.: aa[y][x+1] = .5
if y < h-1 and aa[y+1][x] == 1.: aa[y+1][x] = .5
else:
error = c - 1.
# Propagate first line of error
total = 0
err = []
for (i, j, e) in diff:
if x + i < 0 or x + i >= w \
or y + j < 0 or y + j >= h:
continue
n = mat[(y + j) % dy][(x + i) % dx] - mat[y % dy][x % dx]
if n <= 0:
continue
err.append((i, j, e))
total += e
for (i, j, e) in err:
img[y + j][x + i] += error * e / total
# 4. copy image, replacing grey with white
for x, y in rangexy(w, h):
dest.setGray(x, y, aa[y][x] > 0.)
return dest
ERROR_DOT = \
[[1./12, 1./6, 1./12],
[ 1./6, -1, 1./6],
[1./12, 1./6, 1./12]]
if chapter(3):
Svg(ERROR_DOT).save("out/fig3-3-7b.png", 40)
test337(grad256bw, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/grad3-3-7.png")
test337(lena256bw, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/lena3-3-7.png")
tmp = sharpen(grad256bw, 0.9)
test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/grad3-3-8.png")
test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.2).save("out/grad3-3-9.png")
test3xx(tmp, ERROR_FSTEIN, True).save("out/grad3-3-10.png")
tmp = sharpen(lena256bw, 0.9)
test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/lena3-3-8.png")
test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.2).save("out/lena3-3-9.png")
test3xx(tmp, ERROR_FSTEIN, True).save("out/lena3-3-10.png")
# Output 3.3.11: omni-directional error diffusion
def test3311(src):
w, h = src.size()
g = { 0: 0, 1: 1, 2: 1 }
g[-1] = g[2] - g[1]
g[-2] = g[1] - g[0]
n = 2
while g[n] < w and g[n] < h:
n += 1
g[n] = g[n - 1] + g[n - 3]
g[-n] = g[-n + 3] - g[-n + 2]
u = g[n - 2]
v = g[n - 1]
a = [[(i * u + j * v) % g[n] for i in range(g[n])] for j in range(g[n])]
return a
ERROR_OMNI = \
[[0.1, 0.2, 0.1],
[0.1, -1, 0.1],
[0.1, 0.2, 0.1]]
if chapter(3):
Svg(ERROR_OMNI).save("out/fig3-3-11.png", 40)
mat = test3311(grad256bw)
test337(grad256bw, mat, ERROR_OMNI, 0.).save("out/grad3-3-11.png")
mat = test3311(lena256bw)
tmp = [[str(mat[y][x]) for x in range(16)] for y in range(12)]
for x in range(16): tmp[11][x] = "..."
for y in range(12): tmp[y][15] = "..."
Svg(tmp).save("out/fig3-3-11b.png", 20)
test337(lena256bw, mat, ERROR_OMNI, 0.).save("out/lena3-3-11.png")
# Output 3.4.1: Ostromoukhov's variable error diffusion
def test341(src, serpentine):
m = [[13, 0, 5], [13, 0, 5], [21, 0, 10], [7, 0, 4],
[8, 0, 5], [47, 3, 28], [23, 3, 13], [15, 3, 8],
[22, 6, 11], [43, 15, 20], [7, 3, 3], [501, 224, 211],
[249, 116, 103], [165, 80, 67], [123, 62, 49], [489, 256, 191],
[81, 44, 31], [483, 272, 181], [60, 35, 22], [53, 32, 19],
[237, 148, 83], [471, 304, 161], [3, 2, 1], [481, 314, 185],
[354, 226, 155], [1389, 866, 685], [227, 138, 125], [267, 158, 163],
[327, 188, 220], [61, 34, 45], [627, 338, 505], [1227, 638, 1075],
[20, 10, 19], [1937, 1000, 1767], [977, 520, 855], [657, 360, 551],
[71, 40, 57], [2005, 1160, 1539], [337, 200, 247], [2039, 1240, 1425],
[257, 160, 171], [691, 440, 437], [1045, 680, 627], [301, 200, 171],
[177, 120, 95], [2141, 1480, 1083], [1079, 760, 513], [725, 520, 323],
[137, 100, 57], [2209, 1640, 855], [53, 40, 19], [2243, 1720, 741],
[565, 440, 171], [759, 600, 209], [1147, 920, 285], [2311, 1880, 513],
[97, 80, 19], [335, 280, 57], [1181, 1000, 171], [793, 680, 95],
[599, 520, 57], [2413, 2120, 171], [405, 360, 19], [2447, 2200, 57],
[11, 10, 0], [158, 151, 3], [178, 179, 7], [1030, 1091, 63],
[248, 277, 21], [318, 375, 35], [458, 571, 63], [878, 1159, 147],
[5, 7, 1], [172, 181, 37], [97, 76, 22], [72, 41, 17],
[119, 47, 29], [4, 1, 1], [4, 1, 1], [4, 1, 1],
[4, 1, 1], [4, 1, 1], [4, 1, 1], [4, 1, 1],
[4, 1, 1], [4, 1, 1], [65, 18, 17], [95, 29, 26],
[185, 62, 53], [30, 11, 9], [35, 14, 11], [85, 37, 28],
[55, 26, 19], [80, 41, 29], [155, 86, 59], [5, 3, 2],
[5, 3, 2], [5, 3, 2], [5, 3, 2], [5, 3, 2],
[5, 3, 2], [5, 3, 2], [5, 3, 2], [5, 3, 2],
[5, 3, 2], [5, 3, 2], [5, 3, 2], [5, 3, 2],
[305, 176, 119], [155, 86, 59], [105, 56, 39], [80, 41, 29],
[65, 32, 23], [55, 26, 19], [335, 152, 113], [85, 37, 28],
[115, 48, 37], [35, 14, 11], [355, 136, 109], [30, 11, 9],
[365, 128, 107], [185, 62, 53], [25, 8, 7], [95, 29, 26],
[385, 112, 103], [65, 18, 17], [395, 104, 101], [4, 1, 1]]
(w, h) = src.size()
dest = Image((w, h))
ey = [0.] * (w + 2)
for y in range(h):
ex = 0
newey = [0.] * (w + 2)
if serpentine and y & 1:
xrange = range(w - 1, -1, -1)
else:
xrange = range(w)
for x in xrange:
# Set pixel
c = src.getGray(x, y) + ex + ey[x + 1]
d = c > 0.5
dest.setGray(x, y, d)
error = c - d
i = (int)(c * 255.9999)
if i > 127:
i = 255 - i
(d1, d2, d3) = m[i]
t = d1 + d2 + d3
# Propagate error
ex = error * d1 / t
if serpentine and y & 1:
newey[x + 2] += error * d3 / t
newey[x + 1] += error * d2 / t
else:
newey[x] += error * d2 / t
newey[x + 1] += error * d3 / t
ey = newey
return dest
if chapter(3):
mat = [[0, -1,
'd1(i)'],
['d2(i)',
'd3(i)', 0]]
Svg(mat).save("out/fig3-4-1.png", 40)
test341(grad256bw, True).save("out/grad3-4-1.png")
test341(lena256bw, True).save("out/lena3-4-1.png")
def test351(src, mat, tiles, diff, serpentine, glob):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
ntiles = len(tiles)
ty = len(tiles[0])
tx = len(tiles[0][0])
cur = Matrix(tx, ty, 0.)
w, h = w / tx, h / ty
lines = len(mat)
rows = len(mat[0])
offset = mat[0].index(-1)
ey = Matrix(w + rows - 1, lines, 0.)
for y in range(h):
ex = [0.] * (rows - offset)
if serpentine and y & 1:
xrange = range(w - 1, -1, -1)
else:
xrange = range(w)
for x in xrange:
# Get block value
for i, j in rangexy(tx, ty):
e = ex[0] + ey[0][x + offset]
cur[j][i] = src.getGray(x * tx + i, y * ty + j) + diff[j][i] * e
# Compute closest block and associated error
dist = tx * ty
for n in range(ntiles):
e = 0.
d1 = 0.
d2 = random.random() / 1000.
for i, j in rangexy(tx, ty):
e += cur[j][i] - tiles[n][j][i]
d1 += diff[j][i] * (cur[j][i] - tiles[n][j][i])
d2 += diff[j][i] * abs(cur[j][i] - tiles[n][j][i])
if glob:
d = abs(d1) + d2 / 1000.
else:
d = abs(d1) / (tx * ty) + d2
if d < dist:
dist = d
error = e
best = n
# Set pixel
for i, j in rangexy(tx, ty):
dest.setGray(x * tx + i, y * ty + j, tiles[best][j][i])
# Propagate first line of error
for dx in range(rows - offset - 2):
ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
ex[rows - offset - 2] = error * mat[0][rows - 1]
# Propagate next lines
if serpentine and y & 1:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
else:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][dx]
for dy in range(lines - 1):
ey[dy] = ey[dy + 1]
ey[lines - 1] = [0.] * (w + rows - 1)
return dest
LINES22 = \
[[[0., 0.], [0., 0.]],
[[0., 1.], [0., 1.]],
[[1., 0.], [1., 0.]],
[[1., 1.], [0., 0.]],
[[0., 0.], [1., 1.]],
[[1., 1.], [1., 1.]]]
SQUARES33 = \
[[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]],
[[1., 0., 0.], [0., 0., 0.], [0., 0., 0.]],
[[0., 1., 0.], [0., 0., 0.], [0., 0., 0.]],
[[0., 0., 1.], [0., 0., 0.], [0., 0., 0.]],
[[0., 0., 0.], [1., 0., 0.], [0., 0., 0.]],
[[0., 0., 0.], [0., 1., 0.], [0., 0., 0.]],
[[0., 0., 0.], [0., 0., 1.], [0., 0., 0.]],
[[0., 0., 0.], [0., 0., 0.], [1., 0., 0.]],
[[0., 0., 0.], [0., 0., 0.], [0., 1., 0.]],
[[0., 0., 0.], [0., 0., 0.], [0., 0., 1.]],
[[1., 1., 0.], [1., 1., 0.], [0., 0., 0.]],
[[0., 1., 1.], [0., 1., 1.], [0., 0., 0.]],
[[0., 0., 0.], [1., 1., 0.], [1., 1., 0.]],
[[0., 0., 0.], [0., 1., 1.], [0., 1., 1.]],
[[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]
TILES22 = []
for n in range(1 << 4):
mat = Matrix(2, 2)
for x, y in rangexy(2, 2):
if n & (1 << (y * 2 + x)):
mat[y][x] = 1.
TILES22.append(mat)
DIFF_EVEN22 = \
[[1./4, 1./4],
[1./4, 1./4]]
DIFF_EVEN33 = \
[[1./9, 1./9, 1./9],
[1./9, 1./9, 1./9],
[1./9, 1./9, 1./9]]
if chapter(3):
def colorise(val):
if type(val) == str:
return '#fbb'
return '#fff'
mat = [[.25, .25],
[.25, .25]]
Svg(mat).save("out/fig3-5-2b.png", 40)
mat = [[0, 0, 'a', 'b', 7./64, 7./64],
[0, 0, 'c', 'd', 7./64, 7./64],
[3./64, 3./64, 5./64, 5./64, 1./64, 1./64],
[3./64, 3./64, 5./64, 5./64, 1./64, 1./64]]
Svg(mat, colorise).save("out/fig3-5-2.png", 40)
test351(grad256bw, [[-1, 0]],
LINES22, DIFF_EVEN22, True, True).save("out/grad3-5-1.png")
test351(lena256bw, [[-1, 0]],
LINES22, DIFF_EVEN22, True, True).save("out/lena3-5-1.png")
test351(grad256bw, ERROR_FSTEIN,
LINES22, DIFF_EVEN22, True, True).save("out/grad3-5-2.png")
test351(lena256bw, ERROR_FSTEIN,
LINES22, DIFF_EVEN22, True, True).save("out/lena3-5-2.png")
test351(grad256bw, ERROR_FSTEIN,
SQUARES33, DIFF_EVEN33, True, True).save("out/grad3-5-3.png")
test351(lena256bw, ERROR_FSTEIN,
SQUARES33, DIFF_EVEN33, True, True).save("out/lena3-5-3.png")
test351(grad256bw, ERROR_FSTEIN,
TILES22, DIFF_EVEN22, True, True).save("out/grad3-5-4.png")
test351(lena256bw, ERROR_FSTEIN,
TILES22, DIFF_EVEN22, True, True).save("out/lena3-5-4.png")
DIFF_WEIGHTED22 = \
[[51./128, 33./128],
[25./128, 19./128]]
if chapter(3):
mat = [[6./16, 5./16],
[3./16, 2./16]]
Svg(mat).save("out/fig3-5-5b.png", 40)
mat = [[0, 0, 'a', 'b', 6*7./256, 5*7./256],
[0, 0, 'c', 'd', 3*7./256, 2*7./256],
[6*3./256, 5*3./256, 6*5./256, 5*5./256, 6*1./256, 5*1./256],
[3*3./256, 2*3./256, 3*5./256, 2*5./256, 3*1./256, 2*1./256]]
Svg(mat, colorise).save("out/fig3-5-5.png", 40)
test351(grad256bw, ERROR_FSTEIN,
TILES22, DIFF_WEIGHTED22, True, False).save("out/grad3-5-5.png")
test351(lena256bw, ERROR_FSTEIN,
TILES22, DIFF_WEIGHTED22, True, False).save("out/lena3-5-5.png")
# Output 3.6.1: sub-block error diffusion
def subblock(src, tiles, propagate, diff, gamma):
(w, h) = src.size()
# Gamma correction
if gamma:
ctoi = Gamma.CtoI
itoc = Gamma.ItoC
else:
ctoi = itoc = lambda x : x
# Propagating the error to a temporary buffer is becoming more and
# more complicated. We decide to use an intermediate matrix instead.
tmp = Matrix(w, h, 0.)
for x, y in rangexy(w, h):
tmp[y][x] = ctoi(src.getGray(x, y))
dest = Image((w, h))
# Analyse tile list
ntiles = len(tiles)
ty = len(tiles[0])
tx = len(tiles[0][0])
cur = Matrix(tx, ty, 0.)
w, h = w / tx, h / ty
# Analyse error propagate list
for x, y in rangexy(w, h):
# Get block value
for i, j in rangexy(tx, ty):
cur[j][i] = itoc(tmp[y * ty + j][x * tx + i])
# Select closest block
dist = tx * ty
for n in range(ntiles):
d = 0.
e = 0.
for i, j in rangexy(tx, ty):
d += cur[j][i] - tiles[n][j][i]
e += diff[j][i] * abs(cur[j][i] - tiles[n][j][i])
if abs(d) / (tx * ty) + e < dist:
dist = abs(d) / (tx * ty) + e
best = n
# Set pixel
for i, j in rangexy(tx, ty):
dest.setGray(x * tx + i, y * ty + j, tiles[best][j][i])
# Propagate error
for i, j in rangexy(tx, ty):
e = ctoi(cur[j][i]) - ctoi(tiles[best][j][i])
m = propagate[j][i]
for px, py in rangexy(len(m[0]), len(m)):
if m[py][px] == 0:
continue
if m[py][px] == -1:
cx, cy = px, py
continue
tmpx = x * tx + i + px - cx
tmpy = y * ty + j + py - cy
if tmpx > w * tx - 1 or tmpy > h * ty - 1:
continue
tmp[tmpy][tmpx] += m[py][px] * e
return dest
ERROR_SUBFS22 = \
[[[[0, -1, 0, 8./64],
[0, 0, 0, 10./64],
[7./64, 22./64, 15./64, 2./64]],
[[0, 0, -1, 20./64],
[0, 0, 0, 14./64],
[2./64, 11./64, 15./64, 2./64]]],
[[[0, 0, 0, 0./64],
[0, -1, 0, 6./64],
[12./64, 32./64, 13./64, 1./64]],
[[0, 0, 0, 0./64],
[0, 0, -1, 20./64],
[0./64, 12./64, 28./64, 4./64]]]]
if chapter(3):
subblock(grad256bw, TILES22,
ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/grad3-6-1.png")
subblock(lena256bw, TILES22,
ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/lena3-6-1.png")
subblock(grad256bw, LINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/grad3-6-2.png")
subblock(lena256bw, LINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/lena3-6-2.png")
def colorise(val):
if val == '':
return '#ccc'
if type(val) == str:
return '#fbb'
return '#fff'
# XXX: hack, we modify ERROR_SUBFS22 because it's so much more convenient
for x, y in rangexy(2, 2):
for j in range(2):
for i in range(1, 3):
ERROR_SUBFS22[y][x][j][i] = ''
ERROR_SUBFS22[y][x][y][1 + x] = chr(ord('a') + 2 * y + x)
Svg(ERROR_SUBFS22[0][0], colorise).save("out/fig3-6-1a.png", 40)
Svg(ERROR_SUBFS22[0][1], colorise).save("out/fig3-6-1b.png", 40)
Svg(ERROR_SUBFS22[1][0], colorise).save("out/fig3-6-1c.png", 40)
Svg(ERROR_SUBFS22[1][1], colorise).save("out/fig3-6-1d.png", 40)
for x, y in rangexy(2, 2):
for j in range(2):
for i in range(1, 3):
ERROR_SUBFS22[y][x][j][i] = 0
ERROR_SUBFS22[y][x][y][1 + x] = -1
ERROR_SUBFS33 = \
[[[[ 0, -1, 0, 0, 2./64],
[ 0, 0, 0, 0, 5./64],
[ 0, 0, 0, 0, 6./64],
[ 5./64, 17./64, 17./64, 9./64, 1./64]],
[[ 0, 0, -1, 0, 6./64],
[ 0, 0, 0, 0, 9./64],
[ 0, 0, 0, 0, 8./64],
[ 2./64, 11./64, 16./64, 11./64, 1./64]],
[[ 0, 0, 0, -1, 20./64],
[ 0, 0, 0, 0, 14./64],
[ 0, 0, 0, 0, 8./64],
[ 0, 3./64, 9./64, 9./64, 1./64]]],
[[[ 0, 0, 0, 0, 0],
[ 0, -1, 0, 0, 2./64],
[ 0, 0, 0, 0, 5./64],
[ 7./64, 23./64, 18./64, 8./64, 1./64]],
[[ 0, 0, 0, 0, 0],
[ 0, 0, -1, 0, 6./64],
[ 0, 0, 0, 0, 9./64],
[ 2./64, 12./64, 21./64, 13./64, 1./64]],
[[ 0, 0, 0, 0, 0],
[ 0, 0, 0, -1, 20./64],
[ 0, 0, 0, 0, 14./64],
[ 0, 2./64, 11./64, 15./64, 2./64]]],
[[[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, -1, 0, 0, 2./64],
[12./64, 32./64, 14./64, 4./64, 0]],
[[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, -1, 0, 6./64],
[ 0, 12./64, 32./64, 13./64, 1./64]],
[[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 0, -1, 20./64],
[ 0, 0, 12./64, 28./64, 4./64]]]]
TILES33 = []
for n in range(1 << 9):
mat = Matrix(3, 3)
for x, y in rangexy(3, 3):
if n & (1 << (y * 3 + x)):
mat[y][x] = 1.
TILES33.append(mat)
DIFF_WEIGHTED33 = \
[[15./64, 10./64, 6./64],
[10./64, 6./64, 4./64],
[ 6./64, 4./64, 3./64]]
if chapter(3):
subblock(grad256bw, TILES33,
ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/grad3-6-3.png")
subblock(lena256bw, TILES33,
ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/lena3-6-3.png")
subblock(grad256bw, SQUARES33,
ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/grad3-6-4.png")
subblock(lena256bw, SQUARES33,
ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/lena3-6-4.png")
# XXX: hack, we modify ERROR_SUBFS33 because it's so much more convenient
for x, y in rangexy(3, 3):
for j in range(3):
for i in range(1, 4):
ERROR_SUBFS33[y][x][j][i] = ''
ERROR_SUBFS33[y][x][y][1 + x] = chr(ord('a') + 3 * y + x)
Svg(ERROR_SUBFS33[0][0], colorise).save("out/fig3-6-3a.png", 30)
Svg(ERROR_SUBFS33[0][1], colorise).save("out/fig3-6-3b.png", 30)
Svg(ERROR_SUBFS33[0][2], colorise).save("out/fig3-6-3c.png", 30)
Svg(ERROR_SUBFS33[1][0], colorise).save("out/fig3-6-3d.png", 30)
Svg(ERROR_SUBFS33[1][1], colorise).save("out/fig3-6-3e.png", 30)
Svg(ERROR_SUBFS33[1][2], colorise).save("out/fig3-6-3f.png", 30)
Svg(ERROR_SUBFS33[2][0], colorise).save("out/fig3-6-3g.png", 30)
Svg(ERROR_SUBFS33[2][1], colorise).save("out/fig3-6-3h.png", 30)
Svg(ERROR_SUBFS33[2][2], colorise).save("out/fig3-6-3i.png", 30)
for x, y in rangexy(3, 3):
for j in range(3):
for i in range(1, 4):
ERROR_SUBFS33[y][x][j][i] = 0
ERROR_SUBFS33[y][x][y][1 + x] = -1
##############################################################################
if chapter(4):
print "Chapter 4. Model-based dithering"
# Output 4.1.1: gaussian HVS applied to 8x8 Bayer dither, sigma = 1
# Output 4.1.2: gaussian HVS applied to 8x8 Bayer dither, sigma = 2
def gaussian(n, sigma):
m = Matrix(n, n, 0.)
t = 0.
for x, y in rangexy(n, n):
i = x - (float)(n - 1.) / 2.
j = y - (float)(n - 1.) / 2.
v = math.pow(math.e, - (i * i + j * j) / (2. * sigma * sigma))
m[y][x] = v
t += v
for x, y in rangexy(n, n):
m[y][x] /= t
return m
def convolution(src, m):
(w, h) = src.size()
dest = Image((w, h))
dy = len(m)
dx = len(m[0])
srcmat = [[src.getGray(x, y) for x in range(w)] for y in range(h)]
for x, y in rangexy(w, h):
c = t = 0.
for i, j in rangexy(dx, dy):
u = i - (dx - 1) / 2
v = j - (dy - 1) / 2
if x + u >= w or y + v >= h or x + u < 0 or y + v < 0:
continue
c += srcmat[y + v][x + u] * m[j][i]
t += m[j][i]
dest.setGray(x, y, c / t)
return dest
if chapter(4):
tmp = Image("out/grad2-3-1b.png")
convolution(tmp, gaussian(11, 1.)).save("out/grad4-1-1.png")
convolution(tmp, gaussian(11, 2.)).save("out/grad4-1-2.png")
tmp = Image("out/lena2-3-1b.png")
convolution(tmp, gaussian(11, 1.)).save("out/lena4-1-1.png")
convolution(tmp, gaussian(11, 2.)).save("out/lena4-1-2.png")
# Output 4.2.1: direct binary search, iteration 0
# Output 4.2.2: direct binary search, iteration 1
# Output 4.2.3: direct binary search, iteration 2
# Output 4.2.4: direct binary search, iteration 5
def test42x(src):
random.seed(0)
(w, h) = src.size()
dest = Image((w, h))
for x, y in rangexy(w, h):
c = src.getGray(x, y) + random.random() - 0.5
d = c > 0.5
dest.setGray(x, y, d)
return dest
def test42y(src, dest, hvs):
threshold = 0.4
kernel = Matrix(8, 8, 0.) # have two borders of zeroes
for i, j in rangexy(6, 6):
kernel[j][i] = hvs(i * i + j * j)
(w, h) = src.size()
# Build fast pixel lookup tables
srcmat = Matrix(w, h, 0.)
destmat = Matrix(w, h, 0.)
for x, y in rangexy(w, h):
srcmat[y][x] = src.getGray(x, y)
destmat[y][x] = dest.getGray(x, y)
# Build human perception model for both source and destination
srchvs = Matrix(w, h, 0.)
desthvs = Matrix(w, h, 0.)
for x, y in rangexy(w, h):
srcp = destp = 0.
for j in range(-5, 6):
if y + j < 0 or y + j >= h:
continue
for i in range(-3, 4):
if x + i < 0 or x + i >= w:
continue
m = kernel[abs(j)][abs(i)]
srcp += m * srcmat[y + j][x + i]
destp += m * destmat[y + j][x + i]
srchvs[y][x] = srcp
desthvs[y][x] = destp
swaps = toggles = 0
for x, y in rangexy(w, h):
d = destmat[y][x]
best = 0.
# Compute the effect of a toggle
e = 0.
for j in range(-5, 6):
if y + j < 0 or y + j >= h:
continue
for i in range(-5, 6):
if x + i < 0 or x + i >= w:
continue
m = kernel[abs(j)][abs(i)]
p = srchvs[y + j][x + i]
q1 = desthvs[y + j][x + i]
q2 = q1 - m * d + m * (1. - d)
e += abs(q1 - p) - abs(q2 - p)
if e > best:
best = e
op = False
# Compute the effect of swaps
for dx, dy in [(0, 1), (0, -1), (-1, 0), (1, 0)]:
if y + dy < 0 or y + dy >= h or x + dx < 0 or x + dx >= w:
continue
d2 = destmat[y + dy][x + dx]
if d2 == d:
continue
e = 0.
for j in range(-6, 7):
for i in range(-6, 7):
if y + j < 0 or y + j >= h or x + i < 0 or x + i >= w:
continue
ma = kernel[abs(j)][abs(i)]
mb = kernel[abs(j - dy)][abs(i - dx)]
p = srchvs[y + j][x + i]
q1 = desthvs[y + j][x + i]
q2 = q1 - ma * d + ma * d2 - mb * d2 + mb * d
e += abs(q1 - p) - abs(q2 - p)
if e > best:
best = e
op = (dx, dy)
# Apply the change if interesting
if best <= 0.:
continue
if op:
dx, dy = op
d2 = destmat[y + dy][x + dx]
destmat[y + dy][x + dx] = d
else:
d2 = 1. - d
destmat[y][x] = d2
for j in range(-5, 6):
for i in range(-5, 6):
m = kernel[abs(j)][abs(i)]
if y + j >= 0 and y + j < h and x + i >= 0 and x + i < w:
desthvs[y + j][x + i] -= m * d
desthvs[y + j][x + i] += m * d2
if op and y + dy + j >= 0 and y + dy + j < h \
and x + dx + i >= 0 and x + dx + i < w:
desthvs[y + dy + j][x + dx + i] -= m * d2
desthvs[y + dy + j][x + dx + i] += m * d
for x, y in rangexy(w, h):
dest.setGray(x, y, destmat[y][x])
return dest
if chapter(4):
hvs = lambda x: math.pow(math.e, - math.sqrt(x))
tmp = test42x(grad256bw)
tmp.save("out/grad4-2-1.png")
tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-2.png")
tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-3.png")
for n in range(3): tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-4.png")
tmp = test42x(lena256bw)
tmp.save("out/lena4-2-1.png")
tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-2.png")
tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-3.png")
for n in range(3): tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-4.png")
if chapter(4):
hvs = lambda x: math.pow(math.e, -x / 2.)
tmp = test42x(grad256bw)
for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-5.png")
tmp = test42x(lena256bw)
for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-5.png")
if chapter(4):
hvs = lambda x: math.pow(math.e, -x / 4.5)
tmp = test42x(grad256bw)
for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-6.png")
tmp = test42x(lena256bw)
for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-6.png")
if chapter(4):
hvs = lambda x: math.pow(math.e, -x / 8.)
tmp = test42x(grad256bw)
for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-7.png")
tmp = test42x(lena256bw)
for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-7.png")
if chapter(4):
hvs = lambda x: math.pow(math.e, -x / 8.) + 2. * math.pow(math.e, -x / 1.5)
tmp = test42x(grad256bw)
for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
tmp.save("out/grad4-2-8.png")
tmp = test42x(lena256bw)
for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
tmp.save("out/lena4-2-8.png")
# Chapter 4.3: RMSE computations
def rmse(gray, dither):
(w, h) = gray.size()
error = 0.
for y in range(5, h - 5):
for x in range(5, w - 5):
c = gray.getGray(x, y)
d = dither.getGray(x, y)
error += (c - d) * (c - d)
return error / ((w - 10) * (h - 10))
if chapter(4):
sigmas = [1., 1.5, 2.]
tmp = [convolution(lena256bw, gaussian(11, s)) for s in sigmas]
for name in ["1-1-1", "1-1-2", "1-1-3", "1-3-1", "1-4-1", "1-4-2",
"2-1-1", "2-3-0", "2-3-1", "2-3-1b", "2-3-2", "2-3-2b",
"2-3-3", "2-4-1", "2-4-2", "2-5-1", "2-5-2", "2-5-3",
"2-5-4", "2-6-1", "2-6-2", "2-6-3", "2-6-4", "2-6-5",
"2-6-6", "2-7-1", "2-7-2",
"3-0-1", "3-1-1", "3-1-2", "3-1-3", "3-2-1", "3-2-1b",
"3-2-1c", "3-2-3", "3-2-4", "3-2-5", "3-2-6", "3-2-7",
"3-2-8", "3-3-3", "3-3-4", "3-3-5", "3-3-6", "3-3-7",
"3-3-8", "3-3-9", "3-3-10", "3-3-11", "3-4-1", "3-5-1",
"3-5-2", "3-5-3", "3-5-4", "3-5-5", "3-6-1", "3-6-2",
"3-6-3", "3-6-4",
"4-2-2", "4-2-3", "4-2-4", "4-2-5", "4-2-6", "4-2-7",
"4-2-8"]:
img = Image("out/lena" + name + ".png")
for i in range(3):
tmp2 = convolution(img, gaussian(11, sigmas[i]))
err = 100. * rmse(tmp[i], tmp2)
print "[ERR] %.5f" % (err,)
##############################################################################
if chapter(5):
print "Chapter 5. Greyscale dithering"
# Output 5.0.1: 4x4 Bayer dithering, 3 colours
def test501(src, mat):
(w, h) = src.size()
dest = Image((w, h))
dx = len(mat[0])
dy = len(mat)
for x, y in rangexy(w, h):
c = src.getGray(x, y)
threshold = (1. + mat[y % dy][x % dx]) / (dx * dy + 1)
if c < 0.5:
c = 0.5 * (c > threshold / 2)
else:
c = 0.5 + 0.5 * (c > 0.5 + threshold / 2)
dest.setGray(x, y, c)
return dest
if chapter(5):
test501(grad256bw, DITHER_BAYER88).save("out/grad5-0-1.png")
test501(lena256bw, DITHER_BAYER88).save("out/lena5-0-1.png")
# Output 5.0.2: standard Floyd-Steinberg, 3 colours
def test502(src, mat, serpentine):
(w, h) = src.size()
dest = Image((w, h))
lines = len(mat)
rows = len(mat[0])
offset = mat[0].index(-1)
ey = Matrix(w + rows - 1, lines, 0.)
for y in range(h):
ex = [0.] * (rows - offset)
if serpentine and y & 1:
xrange = range(w - 1, -1, -1)
else:
xrange = range(w)
for x in xrange:
# Set pixel
c = src.getGray(x, y) + ex[0] + ey[0][x + offset]
d = 0.5 * (c > 0.25) + 0.5 * (c > 0.75)
dest.setGray(x, y, d)
error = c - d
# Propagate first line of error
for dx in range(rows - offset - 2):
ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
ex[rows - offset - 2] = error * mat[0][rows - 1]
# Propagate next lines
if serpentine and y & 1:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
else:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][dx]
for dy in range(lines - 1):
ey[dy] = ey[dy + 1]
ey[lines - 1] = [0.] * (w + rows - 1)
return dest
if chapter(5):
test502(grad256bw, ERROR_FSTEIN, True).save("out/grad5-0-2.png")
test502(lena256bw, ERROR_FSTEIN, True).save("out/lena5-0-2.png")
# Pattern 5.1.1: gamma-corrected 50% grey, black-white halftone, 50% grey
if chapter(5):
dest = Image((240, 80))
for y in range(80):
for x in range(80):
dest.setGray(x, y, Gamma.ItoC(0.5))
for x in range(80, 160):
c = (x + y) & 1
dest.setGray(x, y, c)
for x in range(160, 240):
dest.setGray(x, y, 0.5)
dest.save("out/pat5-1-1.png")
# Output 5.2.1: gamma-corrected 2-colour Floyd-Steinberg
# Output 5.2.2: gamma-corrected 3-colour Floyd-Steinberg
# Output 5.2.3: gamma-corrected 4-colour Floyd-Steinberg
def test52x(src, mat, serpentine, threshold):
(w, h) = src.size()
dest = Image((w, h))
lines = len(mat)
rows = len(mat[0])
offset = mat[0].index(-1)
ey = Matrix(w + rows - 1, lines, 0.)
for y in range(h):
ex = [0.] * (rows - offset)
if serpentine and y & 1:
xrange = range(w - 1, -1, -1)
else:
xrange = range(w)
for x in xrange:
# Set pixel
c = Gamma.CtoI(src.getGray(x, y)) + ex[0] + ey[0][x + offset]
d = threshold(c)
dest.setGray(x, y, Gamma.ItoC(d))
error = c - d
# Propagate first line of error
for dx in range(rows - offset - 2):
ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
ex[rows - offset - 2] = error * mat[0][rows - 1]
# Propagate next lines
if serpentine and y & 1:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
else:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx] += error * mat[dy][dx]
for dy in range(lines - 1):
ey[dy] = ey[dy + 1]
ey[lines - 1] = [0.] * (w + rows - 1)
return dest
if chapter(5):
test52x(grad256bw, ERROR_FSTEIN, True, Gamma.Cto2).save("out/grad5-2-1.png")
test52x(lena256bw, ERROR_FSTEIN, True, Gamma.Cto2).save("out/lena5-2-1.png")
test52x(grad256bw, ERROR_FSTEIN, True, Gamma.Cto3).save("out/grad5-2-2.png")
test52x(lena256bw, ERROR_FSTEIN, True, Gamma.Cto3).save("out/lena5-2-2.png")
test52x(grad256bw, ERROR_FSTEIN, True, Gamma.Cto4).save("out/grad5-2-3.png")
test52x(lena256bw, ERROR_FSTEIN, True, Gamma.Cto4).save("out/lena5-2-3.png")
# Output 5.3.1: full 4-colour block error diffusion
GREY22 = []
for n in range(4*4*4*4):
vals = [0., 0.333, 0.666, 1.]
a, b, c, d = n & 3, (n >> 2) & 3, (n >> 4) & 3, (n >> 6) & 3
GREY22.append([[vals[a], vals[b]], [vals[c], vals[d]]])
if chapter(5):
subblock(grad256bw, GREY22,
ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/grad5-3-1.png")
subblock(lena256bw, GREY22,
ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/lena5-3-1.png")
# Output 5.3.2: 4-colour block error diffusion with only line tiles
GREYLINES22 = []
for n in range(4*4*4*4):
vals = [0., 0.333, 0.666, 1.]
a, b, c, d = n & 3, (n >> 2) & 3, (n >> 4) & 3, (n >> 6) & 3
if (a != b or c != d) and (a != c or b != d):
continue
GREYLINES22.append([[vals[a], vals[b]], [vals[c], vals[d]]])
if chapter(5):
subblock(grad256bw, GREYLINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/grad5-3-2.png")
subblock(lena256bw, GREYLINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/lena5-3-2.png")
##############################################################################
if chapter(6):
print "Chapter 6. Colour dithering"
# Pattern 6.1.1: 8-colour palette
if chapter(6):
dest = Image((512, 64))
for x in range(512):
d = x / 64
r = (d & 2) >> 1
g = (d & 4) >> 2
b = d & 1
for y in range(64):
dest.setRgb(x, y, r, g, b)
dest.save("out/pat6-1-1.png")
# Figure 6.1.1: 128x128 Lena
# Figure 6.1.2a: red channel
# Figure 6.1.2b: green channel
# Figure 6.1.2c: blue channel
# Figure 6.1.3a: red channel promoted to greyscale
# Figure 6.1.3b: green channel promoted to greyscale
# Figure 6.1.3c: blue channel promoted to greyscale
# Figure 6.1.4a: dithered red channel
# Figure 6.1.4b: dithered green channel
# Figure 6.1.4c: dithered blue channel
# Figure 6.1.5: combined dithered channels
if chapter(6):
tmp = gammascale(lena256, 2)
tmp.save("out/fig6-1-1.png")
(w, h) = tmp.size()
dst = [Image((w, h), True) for i in range(3)]
for x, y in rangexy(w, h):
rgb = tmp.getRgb(x, y)
dst[0].setRgb(x, y, rgb[0], 0, 0)
dst[1].setRgb(x, y, 0, rgb[1], 0)
dst[2].setRgb(x, y, 0, 0, rgb[2])
dst[0].save("out/fig6-1-2a.png")
dst[1].save("out/fig6-1-2b.png")
dst[2].save("out/fig6-1-2c.png")
for x, y in rangexy(w, h):
for i in range(3):
rgb = dst[i].getRgb(x, y)
dst[i].setRgb(x, y, rgb[i], rgb[i], rgb[i])
dst[0].save("out/fig6-1-3a.png")
dst[1].save("out/fig6-1-3b.png")
dst[2].save("out/fig6-1-3c.png")
for i in range(3):
dst[i] = test52x(dst[i], ERROR_FSTEIN, True, Gamma.Cto2)
dst[0].save("out/fig6-1-4a.png")
dst[1].save("out/fig6-1-4b.png")
dst[2].save("out/fig6-1-4c.png")
for x, y in rangexy(w, h):
for i in range(3):
rgb = [0., 0., 0.]
rgb[i] = (dst[i].getRgb(x, y))[i]
dst[i].setRgb(x, y, *rgb)
dst[0].save("out/fig6-1-5a.png")
dst[1].save("out/fig6-1-5b.png")
dst[2].save("out/fig6-1-5c.png")
for x, y in rangexy(w, h):
rgb = [0., 0., 0.]
for i in range(3):
rgb[i] = (dst[i].getRgb(x, y))[i]
tmp.setRgb(x, y, *rgb)
tmp.save("out/fig6-1-6.png")
# Output 6.1.1: 8-colour Floyd-Steinberg RGB dithering
# Output 6.1.2: 8-colour gamma-corrected Floyd-Steinberg RGB dithering
def test61x(src, mat, func):
(w, h) = src.size()
dest = Image((w, h))
tmp = [Image((w, h)), Image((w, h)), Image((w, h))]
for x, y in rangexy(w, h):
rgb = src.getRgb(x, y)
for i in range(3):
tmp[i].setGray(x, y, rgb[i])
for i in range(3):
tmp[i] = func(tmp[i], mat, True, Gamma.Cto2)
for x, y in rangexy(w, h):
(r, g, b) = [tmp[i].getGray(x, y) for i in range(3)]
dest.setRgb(x, y, r, g, b)
return dest
def test61y(src, mat, serpentine, threshold):
return test3xx(src, mat, serpentine)
if chapter(6):
test61x(grad256, ERROR_FSTEIN, test61y).save("out/grad6-1-1.png")
test61x(lena256, ERROR_FSTEIN, test61y).save("out/lena6-1-1.png")
test61x(grad256, ERROR_FSTEIN, test52x).save("out/grad6-1-2.png")
test61x(lena256, ERROR_FSTEIN, test52x).save("out/lena6-1-2.png")
# Pattern 6.2.1: different colours give the same result
if chapter(6):
dest = Image((320, 160))
for x in range(80):
for y in range(80):
r = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 7
g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
b = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
dest.setRgb(x, y, b, g, r)
for y in range(80, 160):
r = DITHER_BAYER44[y % 4][x % 4] > 7
g = DITHER_BAYER44[y % 4][x % 4] > 13
b = DITHER_BAYER44[y % 4][x % 4] > 13
dest.setRgb(x, y, b, g, r)
for x in range(80, 160):
for y in range(80):
r = DITHER_BAYER44[(y / 8) % 4][(x / 8 - 1) % 4] > 7
g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
b = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
dest.setRgb(x, y, b, g, r)
for y in range(80, 160):
r = DITHER_BAYER44[y % 4][(x - 1) % 4] > 7
g = DITHER_BAYER44[y % 4][x % 4] > 13
b = DITHER_BAYER44[y % 4][x % 4] > 13
dest.setRgb(x, y, b, g, r)
for x in range(160, 240):
for y in range(80):
r = DITHER_BAYER44[(y / 8 + 1) % 4][(x / 8 + 1) % 4] > 7
g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
b = DITHER_BAYER44[(y / 8 + 1) % 4][(x / 8) % 4] > 13
dest.setRgb(x, y, b, g, r)
for y in range(80, 160):
r = DITHER_BAYER44[(y + 1) % 4][(x + 1) % 4] > 7
g = DITHER_BAYER44[y % 4][x % 4] > 13
b = DITHER_BAYER44[(y + 1) % 4][x % 4] > 13
dest.setRgb(x, y, b, g, r)
for x in range(240, 320):
for y in range(80):
r = DITHER_BAYER44[(y / 8 + 1) % 4][(x / 8) % 4] > 7
g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
b = DITHER_BAYER44[(y / 8) % 4][(x / 8 + 2) % 4] > 13
dest.setRgb(x, y, b, g, r)
for y in range(80, 160):
r = DITHER_BAYER44[(y + 1) % 4][x % 4] > 7
g = DITHER_BAYER44[y % 4][x % 4] > 13
b = DITHER_BAYER44[y % 4][(x + 2) % 4] > 13
dest.setRgb(x, y, b, g, r)
dest.save("out/pat6-2-1.png")
# Pattern 6.2.2: 16-colour palette
if chapter(6):
dest = Image((512, 128))
for x, y in rangexy(64, 64):
dest.setGray(x, y, 0)
dest.setGray(448 + x, y, 0.7)
dest.setGray(x, 64 + y, 0.3)
dest.setGray(448 + x, 64 + y, 1.)
for x in range(64, 448):
d = x / 64
r = (d & 2) >> 1
g = (d & 4) >> 2
b = d & 1
for y in range(64, 128):
dest.setRgb(x, y, r, g, b)
r /= 2.
g /= 2.
b /= 2.
for y in range(64):
dest.setRgb(x, y, r, g, b)
dest.save("out/pat6-2-2.png")
# Output 6.2.1: gamma-corrected Floyd-Steinberg with ANSI palette (sigma-abs)
# Output 6.2.2: gamma-corrected Floyd-Steinberg with ANSI palette (euclidian)
def test62x(src, mat, cpal, distance, serpentine):
(w, h) = src.size()
ipal = [[Gamma.CtoI(c[i]) for i in range(3)] for c in cpal]
dest = Image((w, h))
lines = len(mat)
rows = len(mat[0])
offset = mat[0].index(-1)
ey = [[[0.] * 3 for n in range(w + rows - 1)] for n in range(lines)]
for y in range(h):
ex = [[0.] * 3 for n in range(rows - offset)]
if serpentine and y & 1:
xrange = range(w - 1, -1, -1)
else:
xrange = range(w)
for x in xrange:
# Get pixel, add error, set pixel
crgb = src.getRgb(x, y)
irgb = [Gamma.CtoI(crgb[i]) + ex[0][i] + ey[0][x + offset][i] \
for i in range(3)]
crgb = [Gamma.ItoC(irgb[i]) for i in range(3)]
max = 999999.
for n in range(len(cpal)):
d = distance(crgb, cpal[n])
if d < max:
max = d
cbest = cpal[n]
ibest = ipal[n]
dest.setRgb(x, y, *cbest)
# Compute error and propagate it
for i in range(3):
# Propagate first line of error
error = irgb[i] - ibest[i]
for dx in range(rows - offset - 2):
ex[dx][i] = ex[dx + 1][i] + error * mat[0][offset + 1 + dx]
ex[rows - offset - 2][i] = error * mat[0][rows - 1]
# Propagate next lines
if serpentine and y & 1:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx][i] += error * mat[dy][rows - 1 - dx]
else:
for dy in range(1, lines):
for dx in range(rows):
ey[dy][x + dx][i] += error * mat[dy][dx]
for dy in range(lines - 1):
ey[dy] = ey[dy + 1]
ey[lines - 1] = [[0.] * 3 for n in range(w + rows - 1)]
return dest
RGB_PALETTE = \
[[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]]
ANSI_PALETTE = \
[[0, 0, 0],
[0, 0, 0.5],
[0, 0.5, 0],
[0, 0.5, 0.5],
[0.5, 0, 0],
[0.5, 0, 0.5],
[0.5, 0.5, 0],
[0.7, 0.7, 0.7],
[0.3, 0.3, 0.3],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]]
def distmax(u, v):
r, g, b = [abs(u[i] - v[i]) for i in range(3)]
return r + g + b
def disteuclidian(u, v):
r, g, b = [u[i] - v[i] for i in range(3)]
return r*r + g*g + b*b
if chapter(6):
test62x(grad256, ERROR_FSTEIN,
ANSI_PALETTE, distmax, True).save("out/grad6-2-1.png")
test62x(lena256, ERROR_FSTEIN,
ANSI_PALETTE, distmax, True).save("out/lena6-2-1.png")
test62x(grad256, ERROR_FSTEIN,
ANSI_PALETTE, disteuclidian, True).save("out/grad6-2-2.png")
test62x(lena256, ERROR_FSTEIN,
ANSI_PALETTE, disteuclidian, True).save("out/lena6-2-2.png")
def rgb2hsv(r, g, b):
m = (float)(min(r, g, b))
v = (float)(max(r, g, b))
if v == m or v == 0:
return 0., 0., v
s = (v - m) / v
if r == v:
h = (g - b) / (v - m)
if h < 0.:
h += 6
elif g == v:
h = 2. + (b - r) / (v - m)
elif b == v:
h = 4. + (r - g) / (v - m)
return math.pi * h / 3, s, v
def disthsv(u, v):
u = rgb2hsv(*u)
v = rgb2hsv(*v)
d1 = u[2] - v[2]
d2 = u[2] * u[1] * math.cos(u[0]) - v[2] * v[1] * math.cos(v[0])
d3 = u[2] * u[1] * math.sin(u[0]) - v[2] * v[1] * math.sin(v[0])
return d1*d1 + d2*d2 + d3*d3
def disthsv3(u, v):
u = rgb2hsv(*u)
v = rgb2hsv(*v)
d1 = u[2] - v[2]
d2 = u[2] * u[1] * math.cos(u[0]) - v[2] * v[1] * math.cos(v[0])
d3 = u[2] * u[1] * math.sin(u[0]) - v[2] * v[1] * math.sin(v[0])
return 9*d1*d1 + d2*d2 + d3*d3
if chapter(6):
test62x(grad256, ERROR_FSTEIN,
ANSI_PALETTE, disthsv, True).save("out/grad6-2-3.png")
test62x(lena256, ERROR_FSTEIN,
ANSI_PALETTE, disthsv, True).save("out/lena6-2-3.png")
test62x(grad256, ERROR_FSTEIN,
ANSI_PALETTE, disthsv3, True).save("out/grad6-2-4.png")
test62x(lena256, ERROR_FSTEIN,
ANSI_PALETTE, disthsv3, True).save("out/lena6-2-4.png")
# Output 6.4.1: colour sub-block error diffusion
def colorsubblock(src, tiles, propagate, diff):
(w, h) = src.size()
# Propagating the error to a temporary buffer is becoming more and
# more complicated. We decide to use an intermediate matrix instead.
tmp = Matrix(w, h, None)
for x, y in rangexy(w, h):
tmp[y][x] = Gamma.CtoI3(src.getRgb(x, y))
dest = Image((w, h))
# Analyse tile list
ntiles = len(tiles)
ty = len(tiles[0])
tx = len(tiles[0][0])
cur = Matrix(tx, ty, None)
w, h = w / tx, h / ty
# Analyse error propagate list
for x, y in rangexy(w, h):
# Get block value
for i, j in rangexy(tx, ty):
cur[j][i] = Gamma.ItoC3(tmp[y * ty + j][x * tx + i])
# Select closest block
dist = tx * ty
for n in range(ntiles):
d = [0., 0., 0.]
e = 0.
for i, j in rangexy(tx, ty):
tmpe = 0.
for k in range(3):
delta = cur[j][i][k] - tiles[n][j][i][k]
d[k] += delta
tmpe += delta * delta
e += diff[j][i] * math.sqrt(tmpe)
# Without / 3. ugly colour bleeding artifacts appear
absd = (abs(d[0]) + abs(d[1]) + abs(d[2])) / 3.
if absd / (tx * ty) + e < dist:
dist = absd / (tx * ty) + e
best = n
# Set pixel
for i, j in rangexy(tx, ty):
dest.setRgb(x * tx + i, y * ty + j, *(tiles[best][j][i]))
# Propagate error
for i, j in rangexy(tx, ty):
curp = Gamma.CtoI3(cur[j][i])
bestp = Gamma.CtoI3(tiles[best][j][i])
m = propagate[j][i]
for k in range(3):
e = curp[k] - bestp[k]
for px, py in rangexy(len(m[0]), len(m)):
if m[py][px] == 0:
continue
if m[py][px] == -1:
cx, cy = px, py
continue
tmpx = x * tx + i + px - cx
tmpy = y * ty + j + py - cy
if tmpx > w * tx - 1 or tmpy > h * ty - 1:
continue
tmp[tmpy][tmpx][k] += m[py][px] * e
return dest
RGBLINES22 = []
for n in range(8*8*8*8):
a, b, c, d = n & 7, (n >> 3) & 7, (n >> 6) & 7, (n >> 9) & 7
if (a != b or c != d) and (a != c or b != d):
continue
RGBLINES22.append([[RGB_PALETTE[a], RGB_PALETTE[b]],
[RGB_PALETTE[c], RGB_PALETTE[d]]])
if chapter(6):
colorsubblock(grad256, RGBLINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/grad6-4-1.png")
colorsubblock(lena256, RGBLINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/lena6-4-1.png")
ANSILINES22 = []
for n in range(16*16*16*16):
a, b, c, d = n & 15, (n >> 4) & 15, (n >> 8) & 15, (n >> 12) & 15
if (a != b or c != d) and (a != c or b != d):
continue
ANSILINES22.append([[ANSI_PALETTE[a], ANSI_PALETTE[b]],
[ANSI_PALETTE[c], ANSI_PALETTE[d]]])
if chapter(6):
colorsubblock(grad256, ANSILINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/grad6-4-2.png")
colorsubblock(lena256, ANSILINES22,
ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/lena6-4-2.png")
##############################################################################
if chapter(7):
print "Chapter 7. Photographic mosaics"
# Output 7.0.1: create a mosaic from Lena
def mosaic_split(src, tnw, tnh):
random.seed(0)
thumbs = []
(w, h) = src.size()
sw = w / tnw
sh = h / tnh
for x, y in rangexy(sw, sh):
thumbs.append(src.getRegion(x * tnw, y * tnh, tnw, tnh))
random.shuffle(thumbs)
return thumbs
def mosaic_analyse(tnlist, dx, dy):
coeffs = []
for (n, img) in enumerate(tnlist):
tmp = [[[0] * 3 for x in range(dx)] for y in range(dy)]
(w, h) = img.size()
for x, y in rangexy(w, h):
my = y * dy / h
mx = x * dx / w
(r, g, b) = img.getRgb(x, y)
tmp[my][mx][0] += Gamma.CtoI(r) / (w / dx * h / dy)
tmp[my][mx][1] += Gamma.CtoI(g) / (w / dx * h / dy)
tmp[my][mx][2] += Gamma.CtoI(b) / (w / dx * h / dy)
coeffs.append(tmp)
return coeffs
def test701(tnlist, cols):
(tnw, tnh) = tnlist[0].size()
dw = cols
dh = (len(tnlist) + cols - 1) / cols
dest = Image((dw * tnw + 8 * (dw + 1), dh * tnh + 8 * (dh + 1)), True)
for (n, img) in enumerate(tnlist):
di = 8 + (n % dw) * (tnw + 8)
dj = 8 + (n / dw) * (tnh + 8)
img.copyTo(dest, (di, dj))
return dest
if chapter(7):
tnlist = mosaic_split(lena256, 32, 32)
test701(tnlist, 10).save("out/lena7-0-1.png")
# Output 7.1.1: extract 1 colour feature from mosaic tiles
# Output 7.1.2: crop Lena
# Output 7.1.3: generate a mosaic from the 1-feature database
# Output 7.1.4: extract 4 colour features from mosaic tiles
# Output 7.1.5: generate a mosaic from the 4-feature database
def test71x(coeffs, cols, tnw, tnh):
dx = len(coeffs[0][0])
dy = len(coeffs[0])
dw = cols
dh = (len(coeffs) + cols - 1) / cols
dest = Image((dw * tnw + 8 * (dw + 1), dh * tnh + 8 * (dh + 1)), True)
for (n, tab) in enumerate(coeffs):
di = 8 + (n % dw) * (tnw + 8)
dj = 8 + (n / dw) * (tnh + 8)
for x, y in rangexy(tnw, tnh):
(r, g, b) = tab[y * dy / tnh][x * dx / tnw]
dest.setRgb(di + x, dj + y, Gamma.ItoC(r), Gamma.ItoC(g), Gamma.ItoC(b))
return dest
def test71y(src, sqw, sqh, tnlist, coeffs):
(w, h) = src.size()
(tnw, tnh) = tnlist[0].size()
dx = len(coeffs[0][0])
dy = len(coeffs[0])
nx = w / sqw
ny = h / sqh
dest = Image((nx * tnw, ny * tnh), True)
for X, Y in rangexy(nx, ny):
# 1. create statistics about the current square
cur = [[[0] * 3 for x in range(dx)] for y in range(dy)]
for x, y in rangexy(sqw, sqh):
my = y * dy / sqh
mx = x * dx / sqw
(r, g, b) = src.getRgb(X * sqw + x, Y * sqh + y)
cur[my][mx][0] += Gamma.CtoI(r) / (sqw / dx * sqh / dy)
cur[my][mx][1] += Gamma.CtoI(g) / (sqw / dx * sqh / dy)
cur[my][mx][2] += Gamma.CtoI(b) / (sqw / dx * sqh / dy)
# 2. find the best mosaic part
best = -1
dist = 5.
for (n, tmp) in enumerate(coeffs):
d = 0
for i, j in rangexy(dx, dy):
for c in range(3):
t = cur[j][i][c] - tmp[j][i][c]
d += t * t
if d < dist:
dist = d
best = n
# 3. blit mosaic chunk
tnlist[best].copyTo(dest, (X * tnw, Y * tnh))
return dest
if chapter(7):
coeffs1x1 = mosaic_analyse(tnlist, 1, 1)
test71x(coeffs1x1, 10, 8, 8).save("out/lena7-1-1.png")
out712 = lena256.getRegion(100, 90, 80, 80)
out712.save("out/lena7-1-2.png")
test71y(out712, 6, 6, tnlist, coeffs1x1).save("out/lena7-1-3.png")
coeffs2x2 = mosaic_analyse(tnlist, 2, 2)
test71x(coeffs2x2, 10, 16, 16).save("out/lena7-1-4.png")
test71y(out712, 6, 6, tnlist, coeffs2x2).save("out/lena7-1-5.png")
##############################################################################
print "Finished"
# Place temporary cruft below this
sys.exit(0)
def simusubblock(src):
(w, h) = src.size()
dest = Image((w, h))
tmp = Matrix(w, h, 0.)
for x, y in rangexy(w, h):
tmp[y][x] = src.getRgb(x, y)
dest = Image((w, h))
# Analyse tile list
ntiles = len(tiles)
ty = len(tiles[0])
tx = len(tiles[0][0])
cur = Matrix(tx, ty, None)
w, h = w / tx, h / ty
# Analyse error propagate list
for x, y in rangexy(w, h):
# Get block value
for i, j in rangexy(tx, ty):
cur[j][i] = Gamma.ItoC3(tmp[y * ty + j][x * tx + i])
# Select closest block
dist = tx * ty
for n in range(ntiles):
d = [0., 0., 0.]
e = 0.
for i, j in rangexy(tx, ty):
tmpe = 0.
for k in range(3):
delta = cur[j][i][k] - tiles[n][j][i][k]
d[k] += delta
tmpe += delta * delta
e += diff[j][i] * math.sqrt(tmpe)
# Without / 3. ugly colour bleeding artifacts appear
absd = (abs(d[0]) + abs(d[1]) + abs(d[2])) / 3.
if absd / (tx * ty) + e < dist:
dist = absd / (tx * ty) + e
best = n
# Set pixel
for i, j in rangexy(tx, ty):
dest.setRgb(x * tx + i, y * ty + j, *(tiles[best][j][i]))
# Propagate error
for i, j in rangexy(tx, ty):
curp = Gamma.CtoI3(cur[j][i])
bestp = Gamma.CtoI3(tiles[best][j][i])
m = propagate[j][i]
for k in range(3):
e = curp[k] - bestp[k]
for px, py in rangexy(len(m[0]), len(m)):
if m[py][px] == 0:
continue
if m[py][px] == -1:
cx, cy = px, py
continue
tmpx = x * tx + i + px - cx
tmpy = y * ty + j + py - cy
if tmpx > w * tx - 1 or tmpy > h * ty - 1:
continue
tmp[tmpy][tmpx][k] += m[py][px] * e
return dest
# XXX: test -- ranked dither -- it SUCKS
def test26x(src, mat):
(w, h) = src.size()
dest = Image((w, h))
dx = len(mat[0])
dy = len(mat)
for x, y in rangexy(w / dx, h / dy):
# Step 1: get the pixels and count groups
groups = {}
for i, j in rangexy(dx, dy):
p = src.getGray(x * dx + i, y * dy + j)
if groups.has_key(p):
groups[p].append((i, j))
else:
groups[p] = [(i, j)]
# Step 2: create the ranked dither
ranked = Matrix(dx, dy)
for p, g in groups.items():
n = (int)(round(p * len(g)))
if not n:
continue
v = [(mat[j][i], (i, j)) for (i, j) in g]
v.sort()
v = v[0 : n - 1]
for (k, (i, j)) in v:
ranked[j][i] = 1
# Step 3: blit the ranked dither
for j in range(dy):
for i in range(dx):
dest.setGray(x * dx + i, y * dy + j, ranked[j][i])
return dest
if chapter(2):
#test26x(lena256bw, DITHER_BAYER88).save("out/lena2-6-1.png")
#test26x(grad256bw, DITHER_BAYER88).save("out/grad2-6-1.png")
test26x(lena256bw, DITHER_CLUSTER88).save("out/lena2-6-1.png")
test26x(grad256bw, DITHER_CLUSTER88).save("out/grad2-6-1.png")
#####################
#CIE-L*a*b* transformation -- euclidian distance doesn't seem to work great
def rgb2lab(r, g, b):
Xw50 = 0.9642;
Yw50 = 1.0000;
Zw50 = 0.8249;
# RGB to sRGB
r = Gamma.CtoI(r)
g = Gamma.CtoI(g)
b = Gamma.CtoI(b)
# sRGB to XYZ(D65)
x65 = 0.4124*r + 0.3576*g + 0.1805*b
y65 = 0.2126*r + 0.7152*g + 0.0722*b
z65 = 0.0193*r + 0.1192*g + 0.9505*b
# XYZ(D65) to XYZ(D50)
x50 = 1.0282015*x65 + 0.0500707*y65 - 0.0579688*z65
y50 = 0.0197032*x65 + 0.9871848*y65 - 0.0054285*z65
z50 = -0.0002329*x65 + 0.0006862*y65 + 0.7573070*z65
# XYZ(D50) to Lab(D50)
if x50 / Xw50 > 0.008856:
xx50 = math.pow(x50 / Xw50, 1. / 3.)
else:
xx50 = 7.78 * (x50 / Xw50) + 16. / 116.
if y50 / Yw50 > 0.008856:
yy50 = math.pow(y50 / Yw50, 1. / 3.)
else:
yy50 = 7.78 * (y50 / Yw50) + 16. / 116.
if z50 / Zw50 > 0.008856:
zz50 = math.pow(z50 / Zw50, 1. / 3.)
else:
zz50 = 7.78 * (z50 / Zw50) + 16. / 116.
lo = 116. * yy50 - 16.
ao = 500. * (xx50 - yy50)
bo = 200. * (yy50 - zz50)
return lo, ao, bo
def distlab(u, v):
u = rgb2lab(*u)
v = rgb2lab(*v)
l, a, b = u[0] - v[0], u[1] - v[1], u[2] - v[2]
return l*l + a*a + b*b