|
- <?php header("Content-Type: text/html; charset=utf-8"); ?>
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml11.dtd">
-
- <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
-
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
- <meta name="GENERATOR" content="vim" />
- <meta name="Author" content="sam@zoy.org (Sam Hocevar)" />
- <meta name="Description" content="Libcaca study - 5. Greyscale dithering" />
- <meta name="Keywords" content="libcaca, ASCII, ASCII ART, console, text mode, ncurses, slang, AAlib, dithering, thresholding" />
- <title>Libcaca study - 5. Greyscale dithering</title>
- <link rel="icon" type="image/x-icon" href="/favicon.ico" />
- <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" />
- <link rel="stylesheet" type="text/css" href="/main.css" />
- </head>
-
- <body>
-
- <?php include($_SERVER["DOCUMENT_ROOT"]."/header.inc"); ?>
-
- <p> <span style="color: #aa0000; font-weight: bold;">Warning</span>: this
- document is still work in progress. Feel free to send comments but do not
- consider it final material. </p>
-
- <div style="float: left;">
- <a href="part4.html">Model-based dithering <<<</a>
- </div>
- <div style="float: right;">
- <a href="part6.html">>>> Colour dithering</a>
- </div>
- <div style="text-align: center;">
- <a href="index.html">^^^ Index</a>
- </div>
-
- <h2> 5. Greyscale dithering </h2>
-
- <p> At first sight, generalising dithering to three grey scales seems pretty
- straightforward: just add grey 0.5 in the middle of the palette and dither
- pixels in the [0, 0.5] range with black and grey, and pixels in the [0.5, 1]
- range with grey and white. Here are two different results with 8×8 Bayer
- ordered dithering and with serpentine Floyd-Steinberg error diffusion: </p>
-
- <p style="text-align: center;">
- <img src="out/lena5-0-1.png" width="256" height="256"
- class="inline" alt="8×8 Bayer ordered dithering, 3 colours" />
- <img src="out/grad5-0-1.png" width="32" height="256"
- class="inline" alt="8×8 Bayer ordered dithering gradient, 3 colours" />
- <img src="out/lena5-0-2.png" width="256" height="256"
- class="inline" alt="serpentine FS error diffusion, 3 colours" />
- <img src="out/grad5-0-2.png" width="32" height="256"
- class="inline" alt="serpentine FS error diffusion gradient, 3 colours" />
- </p>
-
- <p> These are pretty much the images that imaging software such as The Gimp
- would give (using “positioned” and “Floyd-Steinberg” dithering modes). </p>
-
- <p> Unfortunately the result is not as good as expected: the white pattern
- on Lena’s cheeks is visually disturbing, and there is a lot of 0.5 grey in
- the image. Also, the whole image looks darker than with pure black-and-white
- dithering, but these previous dithering results looked a lot brighter than
- the original image anyway. </p>
-
- <p> All these issues have to do with the output media’s <b>gamma</b>. </p>
-
- <h3> 5.1. Introducing gamma </h3>
-
- <p> If you are reading this document on a computer screen, you may have
- noticed that the black and white 50% pattern was closer to a 0.73 greyscale
- (left) than to the intuitively expected 0.5 value (right). If you are reading
- a printed copy, it might be a different matter. </p>
-
- <p style="text-align: center;">
- <img src="out/pat5-1-1.png" width="240" height="80"
- class="inline" alt="introducing gamma" />
- </p>
-
- <p> The mapping linking greyscale steps to intensities is called <b>gamma
- correction</b>. An approximate law for gamma correction is given as
- <i>I = v<small><sup>γ</sup></small></i> where <i>v</i> is the coded colour
- value (between 0 and 1), <i>I</i> is the perceived colour intensity (between
- 0% and 100%) and <i>γ</i> is the gamma. A pattern made of even-numbered
- 0%-intensity pixels and 100%-intensity pixels has an intensity of 50% by
- definition. But the corresponding greyscale depends on the gamma value. </p>
-
- <p> Most modern computer systems use the sRGB gamma model close to the law
- with <i>γ = 2.2</i>. As can be seen, it is highly non-linear: </p>
-
- <p style="text-align: center;">
- <img src="fig5-1-1.png" width="460" height="256" alt="introducing gamma" />
- </p>
-
- <p> Éric Brasseur wrote <a
- href="http://www.4p8.com/eric.brasseur/gamma.html">a pretty comprehensive
- essay</a> [16] about why on a computer screen a 50% black and white pattern
- should be scaled down to a grey value of 0.73 instead of 0.5 and how major
- computer graphics software totally misses the point. Conversely, it clearly
- means that a grey value of 0.5 should not be emulated with a 50% dither
- pattern. </p>
-
- <p> The following figure shows the gamma curve for the naïve three-colour
- greyscale gradient we saw above (red curve) compared to the two-colour
- gradient (blue curve). Two major observations can be made: the new curve is
- far closer to a perfect, linear gradient, but there is a singularity in the
- middle of the curve, meaning a break in the gradient’s smoothness. </p>
-
- <p style="text-align: center;">
- <img src="fig5-1-2.png" width="460" height="256" alt="3-colour gamma" />
- </p>
-
- <p> There are three possible ways to reduce the singularity and make the
- gradient smoother and/or closer to the original colours: </p>
-
- <ul>
- <li> Choose a different middle grey value, for instance choosing grey 0.73
- will cancel the singularity and match the two-colour gradients we have
- been using so far. This is not always possible if the output palette
- is fixed. </li>
- <li> Don’t place the grey value at the middle of the gradient, for instance
- a value of around 25% intensity will again match the previous two-colour
- gradients. </li>
- <li> <b>Gamma-correct</b> input pixels before assigning them an output
- value. This ensures that the resulting gradient is perfectly linear
- and has no singularity.
- </li>
- </ul>
-
- <h3> 5.2. Gamma correction </h3>
-
- <p> Gamma correction consists in converting pixel values into intensity values
- before performing operations on them, then reconverting them to pixel values
- before displaying them. The exact same algorithms can be used, they just
- operate on slightly different data. </p>
-
- <p style="text-align: center;">
- <img src="fig5-1-3.png" width="460" height="256" alt="3-colour gamma coorection" />
- </p>
-
- <p> Here are the results of gamma-correcting input pixels before doing
- any computation on them, then using serpentine Floyd-Steinberg error
- diffusion: </p>
-
- <p style="text-align: center;">
- <img src="out/lena5-2-1.png" width="256" height="256"
- class="inline" alt="serpentine FS, 2 colours, gamma-corrected" />
- <img src="out/grad5-2-1.png" width="32" height="256"
- class="inline" alt="serpentine FS, 2 colours, gamma-corrected gradient" />
- <img src="out/lena5-2-2.png" width="256" height="256"
- class="inline" alt="serpentine FS, 3 colours, gamma-corrected" />
- <img src="out/grad5-2-2.png" width="32" height="256"
- class="inline" alt="serpentine FS, 3 colours, gamma-corrected gradient" />
- </p>
-
- <p> Two-colour dithering is not visually satisfying: dark areas lack much
- detail because the gamma curve is very flat at low intensities. However,
- the result itself is far more accurate that previously. The problem, while
- still visible, is even less important with three-colour dithering: the image
- on the right is superior to what The Gimp or Adobe Photoshop are able to
- come up with. </p>
-
- <p> Finally, this is gamma-corrected 4-colour dithering: </p>
-
- <p style="text-align: center;">
- <img src="out/lena5-2-3.png" width="256" height="256"
- class="inline" alt="serpentine FS, 4 colours, gamma-corrected" />
- <img src="out/grad5-2-3.png" width="32" height="256"
- class="inline" alt="serpentine FS, 4 colours, gamma-corrected gradient" />
- </p>
-
- <h3> 5.3. Greyscale sub-block error diffusion </h3>
-
- <p> Support for greyscale and gamma correction is trivially added to our
- sub-block error diffusion method. Best-tile choosing is done in contrast
- space, while error diffusion is done in intensity space. </p>
-
- <p> The following picture uses all possible 4-greyscale 2×2 tiles. The
- output quality is very close to what standard, pixel-per-pixel error diffusion
- achieves: </p>
-
- <p style="text-align: center;">
- <img src="out/lena5-3-1.png" width="256" height="256"
- class="inline" alt="sub-block FS, full 4-grey tiles" />
- <img src="out/grad5-3-1.png" width="32" height="256"
- class="inline" alt="sub-block FS, full 4-grey tiles gradient" />
- </p>
-
- <p> And finally, this picture only uses 4-greyscale combinations of the
- “lines” tiles seen previously: </p>
-
- <p style="text-align: center;">
- <img src="fig5-3-1.png" width="307" height="253"
- class="matrix" alt="list of 4-grey 2×2 pixel blocks" />
- <img src="out/lena5-3-2.png" width="256" height="256"
- class="inline" alt="sub-block FS, lines 4-grey tiles" />
- <img src="out/grad5-3-2.png" width="32" height="256"
- class="inline" alt="sub-block FS, lines 4-grey tiles gradient" />
- </p>
-
- <div style="float: left;">
- <a href="part4.html">Model-based dithering <<<</a>
- </div>
- <div style="float: right;">
- <a href="part6.html">>>> Colour dithering</a>
- </div>
- <div style="text-align: center;">
- <a href="index.html">^^^ Index</a>
- </div>
-
- <?php $rev = '$Id$';
- include($_SERVER['DOCUMENT_ROOT'].'/footer.inc'); ?>
-
- </body>
- </html>
|