|
- <?php header("Content-Type: text/html; charset=utf-8"); ?>
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml11.dtd">
-
- <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
-
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
- <meta name="GENERATOR" content="vim" />
- <meta name="Author" content="sam@zoy.org (Sam Hocevar)" />
- <meta name="Description" content="Libcaca study - 3. Error diffusion" />
- <meta name="Keywords" content="libcaca, ASCII, ASCII ART, console, text mode, ncurses, slang, AAlib, dithering, thresholding" />
- <title>Libcaca study - 3. Error diffusion</title>
- <link rel="icon" type="image/x-icon" href="/favicon.ico" />
- <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" />
- <link rel="stylesheet" type="text/css" href="/main.css" />
- </head>
-
- <body>
-
- <?php include($_SERVER["DOCUMENT_ROOT"]."/header.inc"); ?>
-
- <p> <span style="color: #aa0000; font-weight: bold;">Warning</span>: this
- document is still work in progress. Feel free to send comments but do not
- consider it final material. </p>
-
- <div style="float: left;">
- <a href="part2.html">Halftoning <<<</a>
- </div>
- <div style="float: right;">
- <a href="part4.html">>>> Model-based dithering</a>
- </div>
- <div style="text-align: center;">
- <a href="index.html">^^^ Index</a>
- </div>
-
- <h2> 3. Error diffusion </h2>
-
- <p> The idea behind error diffusion is to compute the error caused by
- thresholding a given pixel and propagate it to neighbour pixels, in order to
- compensate for the average intensity loss or gain. It is based upon the
- assumption that a slightly out-of-place pixel causes little visual harm.
- </p>
-
- <p> The error is computed by simply substracting the source value and the
- destination value. Destination value can be chosen by many means but does
- not impact the image a lot with most methods in comparison to the crucial
- choice of error distribution coefficients. </p>
-
- <p> This is the simplest error diffusion method. It thresholds the image
- to 0.5 and propagates 100% of the error to the next (right) pixel. It is
- quite impressive given its simplicity but causes important visual artifacts:
- </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-0-1.png" width="256" height="256"
- class="inline" alt="Simple error diffusion" />
- <img src="out/grad3-0-1.png" width="32" height="256"
- class="inline" alt="Simple error diffusion gradient" />
- </p>
-
- <h3> 3.1. Floyd-Steinberg and JaJuNi error diffusion </h3>
-
- <p> The most famous error diffusion method is the <b>Floyd-Steinberg</b>
- algorithm [5]. It propagates the error to more than one adjacent pixels using
- the following coefficients: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-1-1.png" width="121" height="81" alt="Floyd-Steinberg" />
- </p>
-
- <p> The result of this algorithm is rather impressive even compared to the
- best ordered dither results we could achieve: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-1-1.png" width="256" height="256"
- class="inline" alt="Floyd-Steinberg error diffusion" />
- <img src="out/grad3-1-1.png" width="32" height="256"
- class="inline" alt="Floyd-Steinberg error diffusion gradient" />
- </p>
-
- <p> <b>Jarvis, Judice and Ninke dithering</b> [7] (sometimes nicknamed
- <b>JaJuNi</b>) was published almost at the same time as Floyd-Steinberg. It
- uses a much more complex error diffusion matrix: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-1-3.png" width="201" height="121"
- class="matrix" alt="Jarvis, Judice and Ninke" />
- <img src="out/lena3-1-3.png" width="256" height="256"
- class="inline" alt="Jarvis, Judice and Ninke error diffusion" />
- <img src="out/grad3-1-3.png" width="32" height="256"
- class="inline" alt="Jarvis, Judice and Ninke error diffusion gradient" />
- </p>
-
- <h3> 3.2. Floyd-Steinberg derivatives </h3>
-
- <p> Zhigang Fan came up with several Floyd-Steinberg derivatives. <b>Fan
- dithering</b> [8] just moves one coefficient around: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-1.png" width="161" height="81"
- class="matrix" alt="Fan" />
- <img src="out/lena3-2-1.png" width="256" height="256"
- class="inline" alt="Fan error diffusion" />
- <img src="out/grad3-2-1.png" width="32" height="256"
- class="inline" alt="Fan error diffusion gradient" />
- </p>
-
- <p> <b>Shiau-Fan dithering</b> use a family of matrices supposed to reduce
- the apparition of artifacts usually seen with Floyd-Steinberg: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-1b.png" width="161" height="81"
- class="matrix" alt="Shiau-Fan" />
- <img src="out/lena3-2-1b.png" width="256" height="256"
- class="inline" alt="Shiau-Fan error diffusion" />
- <img src="out/grad3-2-1b.png" width="32" height="256"
- class="inline" alt="Shiau-Fan error diffusion gradient" />
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-1c.png" width="201" height="81"
- class="matrix" alt="Shiau-Fan 2" />
- <img src="out/lena3-2-1c.png" width="256" height="256"
- class="inline" alt="Shiau-Fan 2 error diffusion" />
- <img src="out/grad3-2-1c.png" width="32" height="256"
- class="inline" alt="Shiau-Fan 2 error diffusion gradient" />
- </p>
-
- <p> By the way, these matrices are covered by Shiau’s and Fan’s
- <a href="http://www.freepatentsonline.com/5353127.html">U.S. patent
- 5353127</a>. </p>
-
- <p> <b>Stucki dithering</b> [6] is a slight variation of Jarvis-Judice-Ninke
- dithering: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-3.png" width="201" height="121"
- class="matrix" alt="Stucki" />
- <img src="out/lena3-2-3.png" width="256" height="256"
- class="inline" alt="Stucki error diffusion" />
- <img src="out/grad3-2-3.png" width="32" height="256"
- class="inline" alt="Stucki error diffusion gradient" />
- </p>
-
- <p> <b>Burkes dithering</b> is yet another variation [10] which improves on
- Stucki dithering by removing a line and making the error coefficients fractions
- of powers of two: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-4.png" width="201" height="81"
- class="matrix" alt="Burkes" />
- <img src="out/lena3-2-4.png" width="256" height="256"
- class="inline" alt="Burkes error diffusion" />
- <img src="out/grad3-2-4.png" width="32" height="256"
- class="inline" alt="Burkes error diffusion gradient" />
- </p>
-
- <p> Frankie Sierra [11] came up with a few error diffusion matrices: <b>Sierra
- dithering</b> is a variation of Jarvis that is slightly faster because it
- propagates to fewer pixels, <b>Two-row Sierra</b> is a simplified version
- thereof, and <b>Filter Lite</b> is one of the simplest Floyd-Steinberg
- derivatives: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-5.png" width="201" height="121"
- class="matrix" alt="Sierra" />
- <img src="out/lena3-2-5.png" width="256" height="256"
- class="inline" alt="Sierra error diffusion" />
- <img src="out/grad3-2-5.png" width="32" height="256"
- class="inline" alt="Sierra error diffusion gradient" />
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-6.png" width="201" height="81"
- class="matrix" alt="Sierra" />
- <img src="out/lena3-2-6.png" width="256" height="256"
- class="inline" alt="Sierra error diffusion" />
- <img src="out/grad3-2-6.png" width="32" height="256"
- class="inline" alt="Sierra error diffusion gradient" />
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-7.png" width="121" height="81"
- class="matrix" alt="Sierra" />
- <img src="out/lena3-2-7.png" width="256" height="256"
- class="inline" alt="Sierra error diffusion" />
- <img src="out/grad3-2-7.png" width="32" height="256"
- class="inline" alt="Sierra error diffusion gradient" />
- </p>
-
- <p> <b>Atkinson dithering</b> [12] only propagates 75% of the error, leading
- to a loss of contrast around very dark and very light areas (also called
- <b>highlights and shadows</b>), but better contrast in the midtones. The
- original Macintosh software <i>HyperScan</i> used this dithering algorithm,
- still considered superior to other Floyd-Steinberg derivatives by many Mac
- zealots: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-2-8.png" width="161" height="121"
- class="matrix" alt="Atkinson" />
- <img src="out/lena3-2-8.png" width="256" height="256"
- class="inline" alt="Atkinson error diffusion" />
- <img src="out/grad3-2-8.png" width="32" height="256"
- class="inline" alt="Atkinson error diffusion gradient" />
- </p>
-
- <!-- XXX: Stevenson-Arce is for hexagonal cells!
- <p> <b>Stevenson-Arce dithering</b>: </p>
-
- <p style="text-align: center;">
- <img src="fig3-2-9.png" width="280" height="160"
- class="matrix" alt="Stevenson-Arce" />
- <img src="out/lena3-2-9.png" width="256" height="256"
- class="inline" alt="Stevenson-Arce error diffusion" />
- <img src="out/grad3-2-9.png" width="32" height="256"
- class="inline" alt="Stevenson-Arce error diffusion gradient" />
- </p>
- -->
-
- <h3> 3.3. Changing image parsing direction </h3>
-
- <p> While image parsing order does not matter with ordered dithering, it can
- actually be crucial with error diffusion. The reason is that once a pixel has
- been processed, standard error diffusion methods do not go back. </p>
-
- <p> The usual way to parse an image is one pixel after the other, following
- their order in memory. When reaching the end of a line, we automatically jump
- to the beginning of the next line. Error diffusion methods using this
- parsing order are called <b>raster error diffusion</b>: </p>
-
- <p style="text-align: center;">
- <img src="fig3-3-1.png" width="260" height="110"
- class="matrix" alt="Regular parsing" />
- </p>
-
- <p> Changing the parsing order can help prevent the apparition of artifacts in
- error diffusion algorithms. This is <b>serpentine parsing</b>, where every odd
- line is parsed in reverse order (right to left): </p>
-
- <p style="text-align: center;">
- <img src="fig3-3-2.png" width="260" height="110"
- class="matrix" alt="Serpentine parsing" />
- </p>
-
- <p> The major problem with Floyd-Steinberg is the <b>worm artifacts</b> it
- creates. Here is an example of an image made of grey 0.9 dithered with standard
- Floyd-Steinberg and with <b>serpentine Floyd-Steinberg</b> [13 pp.266—267].
- Most of the worm artifacts have disappeared or were highly reduced: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-3-1.png" width="256" height="256"
- class="inline" alt="Floyd-Steinberg on grey 90%" />
- <img src="out/lena3-3-2.png" width="256" height="256"
- class="inline" alt="serpentine Floyd-Steinberg on grey 90%" />
- </p>
-
- <p> And here are the results of serpentine Floyd-Steinberg on Lena. Only a
- very close look will show the differences with standard Floyd-Steinberg, but
- a few of the artifacts did disappear: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-1-2.png" width="256" height="256"
- class="inline" alt="serpentine Floyd-Steinberg" />
- <img src="out/grad3-1-2.png" width="32" height="256"
- class="inline" alt="serpentine Floyd-Steinberg gradient" />
- </p>
-
- <p> <b>Riemersma dithering</b> [26] parses the image following a plane-filling
- <b>Hilbert curve</b> and only propagates the error of the last <i>q</i> pixels,
- weighting it with an exponential rule. The method is interesting and inventive,
- unfortunately the results are disappointing: structural artifacts are worse
- than with other error diffusion methods (shown here with <i>q = 16</i> and <i>r
- = 16</i>): </p>
-
- <p style="text-align: center;">
- <img src="fig3-3-3.png" width="250" height="250"
- class="matrix" alt="Hilbert curve parsing" />
- <img src="out/lena3-3-3.png" width="256" height="256"
- class="inline" alt="Riemersma dither on Hilbert curve" />
- <img src="out/grad3-3-3.png" width="32" height="256"
- class="inline" alt="Riemersma dither on Hilbert curve gradient" />
- </p>
-
- <p> A variation of Riemersma dithering uses a <b>Hilbert 2 curve</b>, giving
- slightly better results but still causing random artifacts here and there:
- </p>
-
- <p style="text-align: center;">
- <img src="fig3-3-4.png" width="233" height="233"
- class="matrix" alt="Hilbert 2 curve parsing" />
- <img src="out/lena3-3-4.png" width="256" height="256"
- class="inline" alt="Riemersma dither on Hilbert 2 curve" />
- <img src="out/grad3-3-4.png" width="32" height="256"
- class="inline" alt="Riemersma dither on Hilbert 2 curve gradient" />
- </p>
-
- <p> An inherent problem with plane-filling curves is that distances on the
- curve do not mean anything in image space. Riemersma dithering distributes
- error to pixels according to their distance on the curve rather than their
- distance in the image. </p>
-
- <p> We introduce <b>spatial Hilbert dithering</b> that addresses this issue
- by distributing the error according to spatial coordinates. We also get rid
- of the <i>r</i> parameter, choosing to distribute 100% of the error. </p>
-
- <p> This is spatial Hilbert dithering on a Hilbert curve and on a Hilbert 2
- curve. The results show a clear improvement over the original Riemersma
- algorithm, with far less noise and smoother low-gradient areas: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-3-5.png" width="256" height="256"
- class="inline" alt="spatial Hilbert dither on Hilbert curve" />
- <img src="out/grad3-3-5.png" width="32" height="256"
- class="inline" alt="spatial Hilbert dither on Hilbert curve gradient" />
- <img src="out/lena3-3-6.png" width="256" height="256"
- class="inline" alt="spatial Hilbert dither on Hilbert 2 curve" />
- <img src="out/grad3-3-6.png" width="32" height="256"
- class="inline" alt="spatial Hilbert dither on Hilbert 2 curve gradient" />
- </p>
-
- <p> <b>Dot diffusion</b> [14] is an error diffusion method by Donald E. Knuth
- that uses tileable matrices just like ordered dithering, except that the cell
- value order is taken into account for error propagation. Diagonal cells get
- half as much error as directly adjacent cells: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-3-7b.png" width="121" height="121"
- class="matrix" alt="Dot diffusion" />
- </p>
-
- <p> For instance, in the following example, cell 25’s error is propagated to
- cells 44, 36, 30, 34 and 49. Given the diagonal cells rule, cells 44, 30 and
- 49 each get 1/7 of the error and cells 36 and 34 each get 2/7 of the error.
- Similarly, cell 63 gets 100% of cell 61’s error. </p>
-
- <p style="text-align: center;">
- <img src="fig3-3-7.png" width="240" height="240"
- class="matrix" alt="Dot diffusion matrix sample" />
- <img src="out/lena3-3-7.png" width="256" height="256"
- class="inline" alt="Dot diffusion" />
- <img src="out/grad3-3-7.png" width="32" height="256"
- class="inline" alt="Dot diffusion gradient" />
- </p>
-
- <p> The initial result is not extraordinary. But Knuth suggests applying a
- sharpen filter to the original image before applying dot diffusion. He also
- introduces a <i>zeta</i> value to deal with the size of laser printer dots,
- pretty similar to what we’ll see later as <b>gamma correction</b>. The
- following two images had a sharpening value of 0.9 applied to them. The image
- on the right shows <i>zeta = 0.2</i>: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-3-8.png" width="256" height="256"
- class="inline" alt="Dot diffusion sharpen 0.9" />
- <img src="out/grad3-3-8.png" width="32" height="256"
- class="inline" alt="Dot diffusion sharpen 0.9 gradient" />
- <img src="out/lena3-3-9.png" width="256" height="256"
- class="inline" alt="Dot diffusion sharpen 0.9 zeta 0.2" />
- <img src="out/grad3-3-9.png" width="32" height="256"
- class="inline" alt="Dot diffusion sharpen 0.9 zeta 0.2 gradient" />
- </p>
-
- <p> Do not get fooled by Knuth’s apparent good results. They specifically
- target dot printers and do not give terribly good results on a computer
- screen. Actually, a sharpening filter makes just any dithering method look
- better, even basic Floyd-Steinberg dithering (shown here with a sharpening
- value of 0.9, too): </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-3-10.png" width="256" height="256"
- class="inline" alt="FS with sharpening" />
- <img src="out/grad3-3-10.png" width="32" height="256"
- class="inline" alt="FS with sharpening gradient" />
- </p>
-
- <p> Dot diffusion was reinvented 14 years later by Arney, Anderson and Ganawan
- without even citing Knuth. They call their method <b>omni-directional error
- diffusion</b>. Instead of using a clustered dot matrix like Knuth recommends
- for dot diffusion, they use a dispersed dot matrix, which gives far better
- results on a computer display. This is a 16×12 portion of that matrix: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-3-11b.png" width="320" height="240"
- class="matrix" alt="omni-directional ED matrix sample" />
- </p>
-
- <p> The preferred implementation of omni-directional error diffusion uses
- a slightly different propagation matrix, where top and bottom neighbours get
- more error than the others: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-3-11.png" width="121" height="121"
- class="matrix" alt="omni-directional ED" />
- <img src="out/lena3-3-11.png" width="256" height="256"
- class="inline" alt="omni-directional ED" />
- <img src="out/grad3-3-11.png" width="32" height="256"
- class="inline" alt="omni-directional ED gradient" />
- </p>
-
- <h3> 3.4. Variable coefficients error diffusion </h3>
-
- <p> Small error diffusion matrices usually cause artifacts to appear because
- the error is not propagated in enough directions. At the same time, such
- matrices also reduce the sharpened aspect common in error diffusion
- techniques. </p>
-
- <p> Ostromoukhov suggests error diffusion values that vary according to the
- input value. The list of 256 discrete value triplets for <i>d1</i>, <i>d2</i>
- and <i>d3</i> he provides [1] give pretty good results with serpentine parsing:
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-4-1.png" width="121" height="81"
- class="matrix" alt="Ostromoukhov ED matrix" />
- <img src="out/lena3-4-1.png" width="256" height="256"
- class="inline" alt="Ostromoukhov ED" />
- <img src="out/grad3-4-1.png" width="32" height="256"
- class="inline" alt="Ostromoukhov ED gradient" />
- </p>
-
- <h3> 3.5. Block error diffusion </h3>
-
- <p> Sometimes, due to physical restrictions of the target media, output
- is limited to some combinations of pixel blocks, such as the ones shown
- below: </p>
-
- <p style="text-align: center;">
- <img src="fig3-5-1.png" width="613" height="80"
- class="matrix" alt="list of 2×2 pixel blocks" />
- </p>
-
- <p> It is still possible to dither the image, by doing it 4 pixels at a
- time and simply choosing the block from the list that minimises the global
- error within the 2×2 block: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-5-1.png" width="256" height="256"
- class="inline" alt="2×2 pixel block quantisation" />
- <img src="out/grad3-5-1.png" width="32" height="256"
- class="inline" alt="2×2 pixel block quantisation gradient" />
- </p>
-
- <p> Damera-Venkata and Evans introduce <b>block error diffusion</b> [23], which
- reuses traditional error diffusion methods such as Floyd-Steinberg but applies
- the same error value to all pixels of a given block. Only one error value is
- propagated, <i>a+b+c+d</i>, which is the global error within the block: </p>
-
- <p style="text-align: center; font-size: 2em;">
- <img src="out/fig3-1-1.png" width="121" height="81"
- class="math" alt="Floyd-Steinberg" />
- ⊗
- <img src="out/fig3-5-2b.png" width="81" height="81"
- class="math" alt="2×2 balanced matrix" />
- =
- <img src="out/fig3-5-2.png" width="241" height="161"
- class="math" alt="2×2-expanded Floyd-Steinberg" />
- </p>
-
- <p> Here are the results using the previous pixel blocks: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-5-2.png" width="256" height="256"
- class="inline" alt="2×2 block Floyd-Steinberg" />
- <img src="out/grad3-5-2.png" width="32" height="256"
- class="inline" alt="2×2 block Floyd-Steinberg gradient" />
- </p>
-
- <p> Carefully chosen blocks create constraints on the final picture that may
- be of artistic interest: </p>
-
- <p style="text-align: center;">
- <img src="fig3-5-3.png" width="354" height="207"
- class="matrix" alt="artistic 3×3 blocks" />
- <img src="out/lena3-5-3.png" width="256" height="256"
- class="inline" alt="3×3 block Floyd-Steinberg" />
- <img src="out/grad3-5-3.png" width="32" height="256"
- class="inline" alt="3×3 block Floyd-Steinberg gradient" />
- </p>
-
- <p> Using all possible pixel blocks is not equivalent to dithering the image
- pixel by pixel. This is due to both the block-choosing method, which only
- minimises the difference of mean values within blocks intead of the sum of
- local distances, and to the inefficient matrix coefficients, which propagate
- the error beyond immediate neighbours, causing the image to look sharpened.
- </p>
-
- <p> This example shows standard block Floyd-Steinberg using all possible 2×2
- blocks: </p>
-
- <p style="text-align: center;">
- <img src="fig3-5-4.png" width="200" height="200"
- class="matrix" alt="all possible 2×2 blocks" />
- <img src="out/lena3-5-4.png" width="256" height="256"
- class="inline" alt="full 2×2 block Floyd-Steinberg" />
- <img src="out/grad3-5-4.png" width="32" height="256"
- class="inline" alt="full 2×2 block Floyd-Steinberg gradient" />
- </p>
-
- <p> The results on the vertical gradient indicate poor block-choosing. In
- order to improve it, we introduce a modified, weighted intra-block error
- distribution matrix, still based on the original Floyd-Steinberg matrix: </p>
-
- <p style="text-align: center; font-size: 2em;">
- <img src="out/fig3-1-1.png" width="121" height="81"
- class="math" alt="Floyd-Steinberg" />
- ⊗
- <img src="out/fig3-5-5b.png" width="81" height="81"
- class="math" alt="weighted 2×2 matrix" />
- =
- <img src="out/fig3-5-5.png" width="241" height="161"
- class="math" alt="weighted 2×2 propagation matrix" />
- </p>
-
- <p> The result still looks sharpened, but shows considerably less noise: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-5-5.png" width="256" height="256"
- class="inline" alt="weighted full 2×2 block Floyd-Steinberg" />
- <img src="out/grad3-5-5.png" width="32" height="256"
- class="inline" alt="weighted full 2×2 block Floyd-Steinberg gradient" />
- </p>
-
- <h3> 3.6. Sub-block error diffusion </h3>
-
- <p> We introduce <b>sub-block error diffusion</b>, a novel technique improving
- on block error diffusion. It addresses the following observations: </p>
-
- <ul>
- <li> it is not a requirement to propagate the error beyond the immediate
- neighbours; since it causes a sharpen effect, we decide not to do it.
- </li>
- <li> the individual subpixels’ error should be propagated, not the
- global block error. </li>
- <li> subpixel <b>a</b>’s error is harder to compensate than subpixel
- <b>d</b>’s because its immediate neighbours are already in the block
- being processed, so we weight the sub-block matching in order to
- prioritise pixel <b>a</b>’s matching. </li>
- </ul>
-
- <p> We use <i>m⋅n</i> error diffusion matrices, one for each of the current
- block’s pixels. Here are four error diffusion matrices for 2×2 blocks,
- generated from the standard Floyd-Steinberg matrix: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-6-1a.png" width="161" height="121"
- class="math" alt="sub-block 0,0 Floyd-Steinberg" />
- <img src="out/fig3-6-1b.png" width="161" height="121"
- class="math" alt="sub-block 1,0 Floyd-Steinberg" />
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-6-1c.png" width="161" height="121"
- class="math" alt="sub-block 0,1 Floyd-Steinberg" />
- <img src="out/fig3-6-1d.png" width="161" height="121"
- class="math" alt="sub-block 1,1 Floyd-Steinberg" />
- </p>
-
- <p> The results are far better than with the original block error diffusion
- method. On the left, sub-block error diffusion with all possible 2×2 blocks.
- On the right, sub-block error diffusion restricted to the tiles seen in
- 3.5: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-6-1.png" width="256" height="256"
- class="inline" alt="full 2×2 sub-block Floyd-Steinberg" />
- <img src="out/grad3-6-1.png" width="32" height="256"
- class="inline" alt="full 2×2 sub-block Floyd-Steinberg gradient" />
- <img src="out/lena3-6-2.png" width="256" height="256"
- class="inline" alt="2×2 lines sub-block Floyd-Steinberg" />
- <img src="out/grad3-6-2.png" width="32" height="256"
- class="inline" alt="2×2 lines sub-block Floyd-Steinberg gradient" />
- </p>
-
- <p> Similar error diffusion matrices can be generated for 3×3 blocks: </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-6-3a.png" width="150" height="120"
- class="math" alt="sub-block 0,0/3×3 Floyd-Steinberg" />
- <img src="out/fig3-6-3b.png" width="150" height="120"
- class="math" alt="sub-block 1,0/3×3 Floyd-Steinberg" />
- <img src="out/fig3-6-3c.png" width="150" height="120"
- class="math" alt="sub-block 2,0/3×3 Floyd-Steinberg" />
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-6-3d.png" width="150" height="120"
- class="math" alt="sub-block 0,1/3×3 Floyd-Steinberg" />
- <img src="out/fig3-6-3e.png" width="150" height="120"
- class="math" alt="sub-block 1,1/3×3 Floyd-Steinberg" />
- <img src="out/fig3-6-3f.png" width="150" height="120"
- class="math" alt="sub-block 2,1/3×3 Floyd-Steinberg" />
- </p>
-
- <p style="text-align: center;">
- <img src="out/fig3-6-3g.png" width="150" height="120"
- class="math" alt="sub-block 0,2/3×3 Floyd-Steinberg" />
- <img src="out/fig3-6-3h.png" width="150" height="120"
- class="math" alt="sub-block 1,2/3×3 Floyd-Steinberg" />
- <img src="out/fig3-6-3i.png" width="150" height="120"
- class="math" alt="sub-block 2,2/3×3 Floyd-Steinberg" />
- </p>
-
- <p> Here are the results with all the possible 3×3 blocks, and with the
- artistic 3×3 blocks seen in 3.5: </p>
-
- <p style="text-align: center;">
- <img src="out/lena3-6-3.png" width="256" height="256"
- class="inline" alt="3×3 sub-block Floyd-Steinberg" />
- <img src="out/grad3-6-3.png" width="32" height="256"
- class="inline" alt="3×3 sub-block Floyd-Steinberg gradient" />
- <img src="out/lena3-6-4.png" width="256" height="256"
- class="inline" alt="3×3 artistic sub-block Floyd-Steinberg" />
- <img src="out/grad3-6-4.png" width="32" height="256"
- class="inline" alt="3×3 artistic sub-block Floyd-Steinberg gradient" />
- </p>
-
- <div style="float: left;">
- <a href="part2.html">Halftoning <<<</a>
- </div>
- <div style="float: right;">
- <a href="part4.html">>>> Model-based dithering</a>
- </div>
- <div style="text-align: center;">
- <a href="index.html">^^^ Index</a>
- </div>
-
- <?php $rev = '$Id$';
- include($_SERVER['DOCUMENT_ROOT'].'/footer.inc'); ?>
-
- </body>
- </html>
|