|
- #!/usr/bin/env python
-
- import math, gd, random, sys, os
-
- # Select which chapters to run
- def chapter(n):
- if len(sys.argv) == 1:
- return True
- return str(n) in sys.argv
-
- ##############################################################################
-
- # Tiny image class to make examples short and readable
- class Image(gd.image):
- gd.gdMaxColors = 256 * 256 * 256
- def __init__(self, *args):
- if args[0].__class__ == str:
- print "[LOAD] %s" % (args[0],)
- gd.image.__init__(self, *args)
- def save(self, name):
- print "[PNG] %s" % (name,)
- self.writePng(name)
- def getGray(self, x, y):
- p = self.getPixel((x, y))
- c = self.colorComponents(p)[0] / 255.0
- return c
- def getRgb(self, x, y):
- p = self.getPixel((x, y))
- rgb = self.colorComponents(p)
- return [rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0]
- def setGray(self, x, y, t):
- p = (int)(t * 255.999)
- c = self.colorResolve((p, p, p))
- self.setPixel((x, y), c)
- def setRgb(self, x, y, r, g, b):
- r = (int)(r * 255.999)
- g = (int)(g * 255.999)
- b = (int)(b * 255.999)
- c = self.colorResolve((r, g, b))
- self.setPixel((x, y), c)
- def getRegion(self, x, y, w, h):
- dest = Image((w, h), True)
- self.copyTo(dest, (-x, -y))
- return dest
- def getZoom(self, z):
- (w, h) = self.size()
- dest = Image((w * z, h * z), True)
- for y in range(h):
- for x in range(w):
- rgb = self.getRgb(x, y)
- for j in range(z):
- for i in range(z):
- dest.setRgb(x * z + i, y * z + j, *rgb)
- return dest
-
- # Manipulate gamma values
- class Gamma:
- def CtoI(x):
- if x < 0:
- return - math.pow(-x, 2.2)
- return math.pow(x, 2.2)
- def ItoC(x):
- if x < 0:
- return - math.pow(-x, 1 / 2.2)
- return math.pow(x, 1 / 2.2)
- CtoI = staticmethod(CtoI)
- ItoC = staticmethod(ItoC)
- def CtoI3(x):
- return [Gamma.CtoI(x[0]), Gamma.CtoI(x[1]), Gamma.CtoI(x[2])]
- def ItoC3(x):
- return [Gamma.ItoC(x[0]), Gamma.ItoC(x[1]), Gamma.ItoC(x[2])]
- CtoI3 = staticmethod(CtoI3)
- ItoC3 = staticmethod(ItoC3)
- def Cto2(x):
- if x < Gamma.CtoI(0.50):
- return 0.
- return 1.
- def Cto3(x):
- if x < Gamma.CtoI(0.25):
- return 0.
- elif x < Gamma.CtoI(0.75):
- return Gamma.CtoI(0.5)
- return 1.
- def Cto4(x):
- if x < Gamma.CtoI(0.17):
- return 0.
- elif x < Gamma.CtoI(0.50):
- return Gamma.CtoI(0.3333)
- elif x < Gamma.CtoI(0.83):
- return Gamma.CtoI(0.6666)
- return 1.
- Cto2 = staticmethod(Cto2)
- Cto3 = staticmethod(Cto3)
- Cto4 = staticmethod(Cto4)
-
- # Create matrices
- def Matrix(w, h, val = 0):
- return [[val] * w for n in range(h)]
-
- # Iterate in 2D space
- def rangexy(w, h):
- for y in range(h):
- for x in range(w):
- yield (x, y)
-
- ##############################################################################
-
- # Create SVG files from matrix data
- class Svg:
- _data = ''
- _w, _h = 0, 0
- def _colorise(val):
- return '#fff'
- def _reduce(this, val):
- if type(val) == float:
- for x in range(1, 1000):
- if abs(val * x - round(val * x)) < 0.001:
- return (int)(round(val * x)), x
- return val, 1
- def __init__(self, mat, colorise = _colorise):
- # Check whether it is an error diffusion matrix
- ed = False
- for l in mat:
- for x in l:
- if type(x) == str or math.floor(x) != x:
- ed = True
- # Generate SVG file
- (w, h) = (len(mat[0]), len(mat))
- s = \
- '<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n' \
- '<svg\n' \
- ' xmlns="http://www.w3.org/2000/svg"\n' \
- ' xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"\n' \
- ' xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"\n' \
- ' width="%u"\n' \
- ' height="%u">\n' \
- ' <sodipodi:namedview inkscape:document-units="px" />\n' \
- ' <g>\n' % (64 * w + 2, 64 * h + 2)
- line = \
- ' <path sodipodi:nodetypes="cc" d="M %u,%u L %u,%u" ' \
- 'style="stroke:#000;stroke-width:1" />\n'
- box = \
- ' <path sodipodi:nodetypes="cccc" ' \
- 'd="M %u,%u L %u,%u L %u,%u L %u,%u z" ' \
- 'style="fill:%s;stroke:#000;stroke-width:2" />\n'
- text = \
- ' <text style="font-size:%upx;text-align:center;text-anchor:middle;' \
- 'font-family:Bitstream Vera Serif" x="%u" y="%u"%s>%s</text>\n'
- for x, y in rangexy(w, h):
- val = mat[y][x]
- if not ed and val == -1:
- continue
- if ed and val == 0:
- continue
- # Put box
- (ix, iy) = (64. * x + 1, 64. * y + 1)
- if ed and val == -1:
- val = ''
- c = '#fbb'
- else:
- c = colorise(val)
- s += box % (ix, iy, ix + 64, iy, ix + 64, iy + 64, ix, \
- iy + 64, c)
- # Put value
- a, b = self._reduce(val)
- extra = ''
- if b == 1:
- (tx, ty) = (ix + 32, iy + 44)
- n = len(str(val))
- if n > 3 and type(val) == str:
- extra = ' transform="scale(0.7,0.7)"'
- tx = tx / 0.7
- ty = ty / 0.7
- elif n > 3:
- extra = ' transform="scale(0.7,1.)"'
- tx = tx / 0.7
- elif n > 2:
- extra = ' transform="scale(0.8,1.)"'
- tx = tx / 0.8
- s += text % (32, tx, ty, extra, val)
- else:
- s += line % (ix + 8, iy + 32, ix + 56, iy + 32)
- (tx, ty) = (ix + 32, iy + 26)
- s += text % (24, tx, ty, extra, a)
- (tx, ty) = (ix + 32, iy + 56)
- s += text % (24, tx, ty, extra, b)
- s += \
- ' </g>\n' \
- '</svg>\n'
- self._w = 64 * w + 2
- self._h = 64 * h + 2
- self._data = s
- def save(self, name, size):
- svgname = name + ".tmp.svg"
- f = open(svgname, 'w')
- f.write(self._data)
- f.close()
- f = os.popen("inkscape %s -a %u:%u:%u:%u -w%u -h%u -e %s >/dev/null 2>&1" % (svgname, 0, 0, self._w, self._h, size * self._w / 64., size * self._h / 64., name))
- print "[SVG] %s" % (name,)
- f.close()
- os.unlink(svgname)
-
- ##############################################################################
- print "Initialisation"
-
- # Load the original Lena image
- lena512 = Image("lena512.png")
- (w, h) = lena512.size()
-
- # Image 1: greyscale conversion
- # Read the compression FAQ [55] for the rationale behind using the green
- # channel (http://www.faqs.org/faqs/compression-faq/part1/section-30.html)
- if chapter(0):
- (w, h) = lena512.size()
- lena512bw = Image((w, h))
- for x, y in rangexy(w, h):
- rgb = lena512.getRgb(x, y)
- c = rgb[1]
- lena512bw.setGray(x, y, c)
- lena512bw.save("lena512bw.png")
- else:
- lena512bw = Image("lena512bw.png")
-
- def gammascale(src, scale):
- (w, h) = src.size()
- count = src.colorsTotal()
- dest = Image((w / scale, h / scale), count == 0 or count > 256)
- for x, y in rangexy(w / scale, h / scale):
- r = g = b = 0.
- for i, j in rangexy(scale, scale):
- rgb = src.getRgb(x * scale + i, y * scale + j)
- r += Gamma.CtoI(rgb[0])
- g += Gamma.CtoI(rgb[1])
- b += Gamma.CtoI(rgb[2])
- r = Gamma.ItoC(r / (scale * scale))
- g = Gamma.ItoC(g / (scale * scale))
- b = Gamma.ItoC(b / (scale * scale))
- dest.setRgb(x, y, r, g, b)
- return dest
-
- # Image 2: 50% greyscale
- # Image 3: 50% scaling
- if chapter(0):
- lena256bw = gammascale(lena512bw, 2)
- lena256bw.save("lena256bw.png")
- lena256 = gammascale(lena512, 2)
- lena256.save("lena256.png")
- else:
- lena256bw = Image("lena256bw.png")
- lena256 = Image("lena256.png")
-
- # Create a 32x256 greyscale gradient
- if chapter(0):
- grad256bw = Image((32, 256))
- for x, y in rangexy(32, 256):
- grad256bw.setGray(x, 255 - y, y / 255.)
- grad256bw.save("gradient256bw.png")
- else:
- grad256bw = Image("gradient256bw.png")
-
- # Create a 64x256 colour gradient
- if chapter(0):
- grad256 = Image((64, 256), True)
- for x, y in rangexy(64, 256):
- grad256.setRgb(x, y, x / 63., (255. - y) / 255, x / 63.)
- grad256.save("gradient256.png")
- else:
- grad256 = Image("gradient256.png")
-
- ##############################################################################
- if chapter(1):
- print "Chapter 1. Colour quantisation"
-
- # Output 1.1.1: 50% threshold
- # Output 1.1.2: 40% threshold
- # Output 1.1.3: 60% threshold
- def test11x(src, threshold):
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y) > threshold
- dest.setGray(x, y, c)
- return dest
-
- if chapter(1):
- test11x(grad256bw, 0.5).save("out/grad1-1-1.png")
- test11x(lena256bw, 0.5).save("out/lena1-1-1.png")
- test11x(grad256bw, 0.4).save("out/grad1-1-2.png")
- test11x(lena256bw, 0.4).save("out/lena1-1-2.png")
- test11x(grad256bw, 0.6).save("out/grad1-1-3.png")
- test11x(lena256bw, 0.6).save("out/lena1-1-3.png")
-
- # Output 1.2.1: 3-colour threshold
- # Output 1.2.2: 5-colour threshold
- def test12x(src, colors):
- (w, h) = src.size()
- dest = Image((w, h))
- q = colors - 1
- p = -.00001 + colors
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- c = math.floor(c * p) / q
- dest.setGray(x, y, c)
- return dest
-
- if chapter(1):
- test12x(grad256bw, 3).save("out/grad1-2-1.png")
- test12x(lena256bw, 3).save("out/lena1-2-1.png")
- test12x(grad256bw, 5).save("out/grad1-2-2.png")
- test12x(lena256bw, 5).save("out/lena1-2-2.png")
-
- # Output 1.2.3: 3-colour threshold, minimal error
- # Output 1.2.4: 5-colour threshold, minimal error
- def test12y(src, colors):
- (w, h) = src.size()
- dest = Image((w, h))
- q = colors - 1
- p = -.00001 + colors - 1
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- c = math.floor((c + 0.5 / p) * p) / q
- dest.setGray(x, y, c)
- return dest
-
- if chapter(1):
- test12y(grad256bw, 3).save("out/grad1-2-3.png")
- test12y(lena256bw, 3).save("out/lena1-2-3.png")
- test12y(grad256bw, 5).save("out/grad1-2-4.png")
- test12y(lena256bw, 5).save("out/lena1-2-4.png")
-
- # Output 1.3.1: 2-colour threshold, dynamic thresholding
- # Output 1.3.2: 5-colour threshold, dynamic thresholding
- def test13x(src, n, fuzzy = None):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- # Compute histogram
- histo = [0] * 256
- for x, y in rangexy(w, h):
- histo[(int)(src.getGray(x, y) * 255.9999)] += 1
- thresholds = [1. * (1. + i) / n for i in range(n - 1)]
- values = [i / (n - 1.) for i in range(n)]
- # Parse histogram
- total = 0
- t = 0
- for i in range(256):
- total += histo[i]
- if total > thresholds[t] * w * h:
- thresholds[t] = i / 255.0
- t += 1
- if t + 1 > n - 1:
- break
- # Compute image
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- for (i, t) in enumerate(thresholds):
- if fuzzy:
- t += fuzzy()
- if c < t:
- dest.setGray(x, y, values[i])
- break
- else:
- dest.setGray(x, y, values[n - 1])
- return dest
-
- if chapter(1):
- test13x(grad256bw, 2).save("out/grad1-3-1.png")
- test13x(lena256bw, 2).save("out/lena1-3-1.png")
- test13x(grad256bw, 5).save("out/grad1-3-2.png")
- test13x(lena256bw, 5).save("out/lena1-3-2.png")
-
- # Output 1.4.1: uniform random dithering
- def test141(src):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- d = c > random.random()
- dest.setGray(x, y, d)
- return dest
-
- if chapter(1):
- test141(grad256bw).save("out/grad1-4-1.png")
- test141(lena256bw).save("out/lena1-4-1.png")
-
- # Output 1.4.2: gaussian random dithering
- def test142(src):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- d = c > random.gauss(0.5, 0.15)
- dest.setGray(x, y, d)
- return dest
-
- if chapter(1):
- test142(grad256bw).save("out/grad1-4-2.png")
- test142(lena256bw).save("out/lena1-4-2.png")
-
- # Output 1.4.3: 3-colour threshold, dynamic thresholding, gaussian perturbation
- if chapter(1):
- fuzzy = lambda : random.gauss(0., 0.08)
- test13x(grad256bw, 4, fuzzy).save("out/grad1-4-3.png")
- test13x(lena256bw, 4, fuzzy).save("out/lena1-4-3.png")
-
- ##############################################################################
- if chapter(2):
- print "Chapter 2. Halftoning patterns"
-
- # Pattern 2.1.1: a 50% halftone pattern with various block sizes
- # Pattern 2.1.2: 25% and 75% halftone patterns with various block sizes
- if chapter(2):
- dest = Image((320, 80))
- for x in range(320):
- d = 8 >> (x / 80)
- for y in range(80):
- c = (x / d + y / d) & 1
- dest.setGray(x, y, c)
- dest.save("out/pat2-1-1.png")
-
- dest = Image((320, 80))
- for x in range(320):
- d = 8 >> (x / 80)
- for y in range(40):
- c = ((x / d + y / d) & 1) or (y / d & 1)
- dest.setGray(x, y, c)
- for y in range(40, 80):
- c = ((x / d + y / d) & 1) and (y / d & 1)
- dest.setGray(x, y, c)
- dest.save("out/pat2-1-2.png")
-
- # Output 2.1.1: 20/40/60/80% threshold with 25/50/75% patterns inbetween:
- def test211(src):
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- if c < 0.2:
- c = 0.
- elif c < 0.4:
- c = ((x + y) & 1) and (y & 1)
- elif c < 0.6:
- c = (x + y) & 1
- elif c < 0.8:
- c = ((x + y) & 1) or (y & 1)
- else:
- c = 1.
- dest.setGray(x, y, c)
- return dest
-
- if chapter(2):
- test211(grad256bw).save("out/grad2-1-1.png")
- test211(lena256bw).save("out/lena2-1-1.png")
-
- # Pattern 2.2.1: vertical, mixed and horizontal black-white halftones
- # Pattern 2.2.2: two different 25% patterns
- if chapter(2):
- dest = Image((240, 80))
- for y in range(80):
- for x in range(80):
- c = x & 1
- dest.setGray(x, y, c)
- for x in range(80, 160):
- c = (x / d + y / d) & 1
- dest.setGray(x, y, c)
- for x in range(160, 240):
- c = y & 1
- dest.setGray(x, y, c)
- dest.save("out/pat2-2-1.png")
-
- dest = Image((320, 80))
- for y in range(80):
- for x in range(80):
- c = (x / 2 & 1) and (y / 2 & 1)
- dest.setGray(x, y, c)
- for x in range(80, 160):
- c = (x & 1) and (y & 1)
- dest.setGray(x, y, c)
- for x in range(160, 240):
- c = (x & 1) and ((y + x / 2) & 1)
- dest.setGray(x, y, c)
- for x in range(240, 320):
- c = (x / 2 & 1) and ((y / 2 + x / 4) & 1)
- dest.setGray(x, y, c)
- dest.save("out/pat2-2-2.png")
-
- # Output 2.3.0: 2x2 Bayer dithering
- # Output 2.3.1: 4x4 Bayer dithering
- # Output 2.3.1b: 8x8 Bayer dithering
- # Output 2.3.2: 4x4 cluster dot
- # Output 2.3.2b: 8x8 cluster dot
- # Output 2.3.3: 5x3 line dithering
- def ordereddither(src, mat):
- (w, h) = src.size()
- dest = Image((w, h))
- dx = len(mat[0])
- dy = len(mat)
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- threshold = (1. + mat[y % dy][x % dx]) / (dx * dy + 1)
- c = c > threshold
- dest.setGray(x, y, c)
- return dest
-
- def makebayer(rank, mat = False):
- if not mat:
- mat = Matrix(1, 1)
- if not rank:
- return mat
- n = len(mat)
- newmat = Matrix(n * 2, n * 2)
- for i, j in rangexy(n, n):
- x = mat[j][i]
- newmat[j * 2][i * 2] = x
- newmat[j * 2][i * 2 + 1] = x + n * n * 3
- newmat[j * 2 + 1][i * 2] = x + n * n * 2
- newmat[j * 2 + 1][i * 2 + 1] = x + n * n
- return makebayer(rank - 1, newmat)
-
- DITHER_BAYER22 = makebayer(1)
- DITHER_BAYER44 = makebayer(2)
- DITHER_BAYER88 = makebayer(3)
-
- DITHER_CLUSTER44 = \
- [[ 12, 5, 6, 13],
- [ 4, 0, 1, 7],
- [ 11, 3, 2, 8],
- [ 15, 10, 9, 14]]
- DITHER_CLUSTER88 = \
- [[ 24, 10, 12, 26, 35, 47, 49, 37],
- [ 8, 0, 2, 14, 45, 59, 61, 51],
- [ 22, 6, 4, 16, 43, 57, 63, 53],
- [ 30, 20, 18, 28, 33, 41, 55, 39],
- [ 34, 46, 48, 36, 25, 11, 13, 27],
- [ 44, 58, 60, 50, 9, 1, 3, 15],
- [ 42, 56, 62, 52, 23, 7, 5, 17],
- [ 32, 40, 54, 38, 31, 21, 19, 29]]
- DITHER_LINE53 = \
- [[ 9, 3, 0, 6, 12],
- [ 10, 4, 1, 7, 13],
- [ 11, 5, 2, 8, 14]]
-
- def bayercol(val): return ['#fdf', '#dfd', '#ffd', '#dff'][val % 4]
-
- if chapter(2):
- ordereddither(grad256bw, DITHER_BAYER22).save("out/grad2-3-0.png")
- ordereddither(lena256bw, DITHER_BAYER22).save("out/lena2-3-0.png")
-
- Svg(DITHER_BAYER44, bayercol).save("out/fig2-3-2.png", 40)
- ordereddither(grad256bw, DITHER_BAYER44).save("out/grad2-3-1.png")
- ordereddither(lena256bw, DITHER_BAYER44).save("out/lena2-3-1.png")
-
- Svg(DITHER_BAYER88, bayercol).save("out/fig2-3-2b.png", 30)
- ordereddither(grad256bw, DITHER_BAYER88).save("out/grad2-3-1b.png")
- ordereddither(lena256bw, DITHER_BAYER88).save("out/lena2-3-1b.png")
-
- Svg(DITHER_CLUSTER44).save("out/fig2-3-3.png", 40)
- ordereddither(grad256bw, DITHER_CLUSTER44).save("out/grad2-3-2.png")
- ordereddither(lena256bw, DITHER_CLUSTER44).save("out/lena2-3-2.png")
-
- Svg(DITHER_CLUSTER88).save("out/fig2-3-3b.png", 30)
- ordereddither(grad256bw, DITHER_CLUSTER88).save("out/grad2-3-2b.png")
- ordereddither(lena256bw, DITHER_CLUSTER88).save("out/lena2-3-2b.png")
-
- Svg(DITHER_LINE53).save("out/fig2-3-4.png", 40)
- ordereddither(grad256bw, DITHER_LINE53).save("out/grad2-3-3.png")
- ordereddither(lena256bw, DITHER_LINE53).save("out/lena2-3-3.png")
-
- # Output 2.4.1: 4x4 Bayer dithering with gaussian perturbation
- def test241(src, mat):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- dx = len(mat[0])
- dy = len(mat)
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- threshold = (1. + mat[y % dy][x % dx]) / (dx * dy + 1)
- threshold += random.gauss(0, 0.08)
- c = c > threshold
- dest.setGray(x, y, c)
- return dest
-
- if chapter(2):
- test241(grad256bw, DITHER_BAYER88).save("out/grad2-4-1.png")
- test241(lena256bw, DITHER_BAYER88).save("out/lena2-4-1.png")
-
- # Output 2.4.2: random dither matrice selection
- def test242(src, mlist):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- dx = len(mlist[0][0])
- dy = len(mlist[0])
- for x, y in rangexy(w / dx, h / dy):
- mat = random.choice(mlist)
- for i, j in rangexy(dx, dy):
- c = src.getGray(x * dx + i, y * dy + j)
- threshold = (1. + mat[j][i]) / (dx * dy + 1)
- d = c > threshold
- dest.setGray(x * dx + i, y * dy + j, d)
- return dest
-
- if chapter(2):
- m1 = [[1, 4, 7],
- [6, 0, 2],
- [3, 8, 5]]
- m2 = [[4, 6, 3],
- [8, 1, 5],
- [0, 3, 7]]
- m3 = [[5, 0, 3],
- [2, 8, 6],
- [7, 4, 1]]
- m4 = [[8, 2, 5],
- [6, 4, 0],
- [1, 7, 3]]
- m5 = [[2, 5, 8],
- [0, 7, 3],
- [4, 1, 6]]
- m6 = [[7, 4, 1],
- [3, 6, 8],
- [2, 0, 5]]
- mlist = [m1, m2, m3, m4, m5, m6]
- test242(grad256bw, mlist).save("out/grad2-4-2.png")
- test242(lena256bw, mlist).save("out/lena2-4-2.png")
-
- # Output 2.5.1: cross pattern
- # Output 2.5.2: hex pattern
- # Output 2.5.3: square pattern
- def test25x(src, mat, vec):
- # 1. count positive cells
- n = 0
- for line in mat:
- for x in line:
- if x >= 0:
- n += 1
- # 2. create list of vectors
- l = []
- x = y = 0
- while (x, y) not in l:
- l.append((x, y))
- (x, y) = ((x + vec[0][0]) % n, (y + vec[0][1]) % n)
- if (x, y) in l:
- (x, y) = ((x + vec[1][0]) % n, (y + vec[1][1]) % n)
- # 3. create big matrix
- m = Matrix(n, n)
- for v in l:
- for x, y in rangexy(len(mat[0]), len(mat)):
- if mat[y][x] < 0:
- continue
- m[(v[1] + y + n) % n][(v[0] + x + n) % n] = mat[y][x]
- # 4. dither image
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- threshold = (1. + m[y % n][x % n]) / (1. + n)
- d = c > threshold
- dest.setGray(x, y, d)
- return dest
-
- if chapter(2):
- mat = [[-1, 4, -1],
- [ 3, 0, 1],
- [-1, 2, -1]]
- vec = [(2, -1), (1, 2)]
- test25x(grad256bw, mat, vec).save("out/grad2-5-1.png")
- test25x(lena256bw, mat, vec).save("out/lena2-5-1.png")
- mat = [[-1, 4, 2, -1],
- [ 6, 0, 5, 3],
- [-1, 7, 1, -1]]
- vec = [(2, -2), (3, 1)]
- test25x(grad256bw, mat, vec).save("out/grad2-5-2.png")
- test25x(lena256bw, mat, vec).save("out/lena2-5-2.png")
- mat = [[-1, -1, -1, 7, -1],
- [-1, 2, 6, 9, 8],
- [ 3, 0, 1, 5, -1],
- [-1, 4, -1, -1, -1]]
- vec = [(2, 4), (3, 1)]
- test25x(grad256bw, mat, vec).save("out/grad2-5-3.png")
- test25x(lena256bw, mat, vec).save("out/lena2-5-3.png")
- mat = [[-1, -1, 2, -1],
- [ 0, 1, 3, 8],
- [ 5, 4, 7, 6],
- [-1, 9, -1, -1]]
- vec = [(2, 2), (0, 5)]
- test25x(grad256bw, mat, vec).save("out/grad2-5-4.png")
- test25x(lena256bw, mat, vec).save("out/lena2-5-4.png")
-
- # Output 2.6.1: 4-wise cross pattern
- # Output 2.6.2: 3-wise hex pattern
- # Output 2.6.3: 4-wise square pattern
- if chapter(2):
- mat = [[-1, -1, -1, 18, -1, -1],
- [-1, 16, 14, 2, 6, -1],
- [12, 0, 4, 10, 17, -1],
- [-1, 8, 19, 13, 1, 5],
- [-1, 15, 3, 7, 9, -1],
- [-1, -1, 11, -1, -1, -1]]
- vec = [(4, -2), (2, 4)]
- test25x(grad256bw, mat, vec).save("out/grad2-6-1.png")
- test25x(lena256bw, mat, vec).save("out/lena2-6-1.png")
-
- mat = [[-1, 12, 6, -1, -1, -1, -1],
- [18, 0, 15, 9, 14, 8, -1],
- [-1, 21, 3, 20, 2, 17, 11],
- [-1, -1, 13, 7, 23, 5, -1],
- [-1, 19, 1, 16, 10, -1, -1],
- [-1, -1, 22, 4, -1, -1, -1]]
- vec = [(5, -1), (-1, 5)]
- test25x(grad256bw, mat, vec).save("out/grad2-6-2.png")
- test25x(lena256bw, mat, vec).save("out/lena2-6-2.png")
-
- mat = [[-1, -1, -1, -1, 30, -1, -1, -1, -1],
- [-1, -1, 10, 26, 38, 34, -1, 29, -1],
- [-1, 14, 2, 6, 22, 9, 25, 37, 33],
- [-1, -1, 18, 28, 13, 1, 5, 21, -1],
- [-1, 8, 24, 36, 32, 17, 31, -1, -1],
- [12, 0, 4, 20, 11, 27, 39, 35, -1],
- [-1, 16, -1, 15, 3, 7, 23, -1, -1],
- [-1, -1, -1, -1, 19, -1, -1, -1, -1]]
- vec = [(6, 2), (-2, 6)]
- test25x(grad256bw, mat, vec).save("out/grad2-6-3.png")
- test25x(lena256bw, mat, vec).save("out/lena2-6-3.png")
-
- mat = [[-1, -1, 3, 35, -1, -1, 1, 33, -1, -1, -1, -1, -1],
- [-1, -1, -1, 19, 51, -1, -1, 17, 49, -1, -1, -1, -1],
- [ 7, 39, 11, 43, 5, 37, 9, 41, -1, -1, -1, -1, -1],
- [-1, 23, 55, 27, 59, 21, 53, 25, 57, -1, -1, -1, -1],
- [15, 47, -1, -1, 13, 45, 2, 34, -1, -1, 0, 32, -1],
- [-1, 31, 63, -1, -1, 29, 61, 18, 50, -1, -1, 16, 48],
- [-1, -1, -1, -1, 6, 38, 10, 42, 4, 36, 8, 40, -1],
- [-1, -1, -1, -1, -1, 22, 54, 26, 58, 20, 52, 24, 56],
- [-1, -1, -1, -1, 14, 46, -1, -1, 12, 44, -1, -1, -1],
- [-1, -1, -1, -1, -1, 30, 62, -1, -1, 28, 60, -1, -1]]
- vec = [(8, 0), (0, 8)]
- def colorise(val):
- if val == 0: return '#fff'
- if (val % 64) == 32: return '#ddf'
- if (val % 32) == 16: return '#fdd'
- if (val % 16) == 8: return '#dff'
- if (val % 8) == 4: return '#ffd'
- if (val % 4) == 2: return '#fdf'
- return '#dfd'
- Svg(mat, colorise).save("out/fig2-6-4.png", 25)
- test25x(grad256bw, mat, vec).save("out/grad2-6-4.png")
- test25x(lena256bw, mat, vec).save("out/lena2-6-4.png")
-
- mat = [[ -1, -1, -1, -1, -1, -1, 8, -1],
- [ -1, -1, 6, -1, 2, 5, 11, 26],
- [ 0, 3, 9, 24, 17, 14, 23, 20],
- [ 15, 12, 21, 18, 7, 29, -1, -1],
- [ -1, 27, 1, 4, 10, 25, -1, -1],
- [ -1, -1, 16, 13, 22, 19, -1, -1],
- [ -1, -1, -1, 28, -1, -1, -1, -1]]
- vec = [(6, 1), (0, 5)]
- def colorise(val): return ['#dff', '#ffd', '#fdf'][val % 3]
- #Svg(mat, colorise).save("out/fig2-6-5.png", 30)
- test25x(grad256bw, mat, vec).save("out/grad2-6-5.png")
- test25x(lena256bw, mat, vec).save("out/lena2-6-5.png")
-
- mat = [[ -1, -1, -1, -1, -1, -1, 24, -1, -1, -1, -1, -1, -1, -1],
- [ -1, -1, 18, -1, 6, 15, 33, 78, -1, -1, -1, -1, 26, -1],
- [ 0, 9, 27, 72, 51, 42, 69, 60, 20, -1, 8, 17, 35, 80],
- [ 45, 36, 63, 54, 21, 87, 2, 11, 29, 74, 53, 44, 71, 62],
- [ -1, 81, 3, 12, 30, 75, 47, 38, 65, 56, 23, 89, -1, -1],
- [ -1, -1, 48, 39, 66, 57, 25, 83, 5, 14, 32, 77, -1, -1],
- [ -1, -1, 19, 84, 7, 16, 34, 79, 50, 41, 68, 59, -1, -1],
- [ 1, 10, 28, 73, 52, 43, 70, 61, -1, 86, -1, -1, -1, -1],
- [ 46, 37, 64, 55, 22, 88, -1, -1, -1, -1, -1, -1, -1, -1],
- [ -1, 82, 4, 13, 31, 76, -1, -1, -1, -1, -1, -1, -1, -1],
- [ -1, -1, 49, 40, 67, 58, -1, -1, -1, -1, -1, -1, -1, -1],
- [ -1, -1, -1, 85, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]]
- test25x(grad256bw, mat, vec).save("out/grad2-6-6.png")
- test25x(lena256bw, mat, vec).save("out/lena2-6-6.png")
-
- # Output 2.7.1: void and cluster matrix generation
- def makegauss(n):
- c = (-1. + n) / 2
- mat = Matrix(n, n)
- for x, y in rangexy(n, n):
- mat[y][x] = math.exp(- ((c - x) * (c - x) + (c - y) * (c - y)) / (0.05 * n * n))
- return mat
-
- def countones(mat):
- total = 0
- for l in mat:
- for x in l:
- if x:
- total += 1
- return total
-
- GAUSS77 = makegauss(7)
- GAUSS99 = makegauss(9)
-
- def getminmax(mat, c):
- min = 9999.
- max = 0.
- h = len(mat)
- w = len(mat[0])
- for x, y in rangexy(w, h):
- if mat[y][x] != c:
- continue
- total = 0.
- for i, j in rangexy(7, 7):
- total += mat[(y + j - 3 + h) % h][(x + i - 3 + w) % w] \
- * GAUSS77[j][i]
- if total > max:
- (max, max_x, max_y) = (total, x, y)
- if total < min:
- (min, min_x, min_y) = (total, x, y)
- return (min_x, min_y, max_x, max_y)
-
- def makeuniform(n):
- random.seed(0)
- mat = Matrix(n, n)
- for t in range(n * n / 10):
- x = (int)(random.random() * n)
- y = (int)(random.random() * n)
- mat[y][x] = 1
- while True:
- (dummy0, dummy1, x, y) = getminmax(mat, 1.)
- mat[y][x] = 0.
- (x2, y2, dummy0, dummy1) = getminmax(mat, 0.)
- mat[y2][x2] = 1.
- if x2 == x and y2 == y:
- break
- return mat
-
- def makevoidandcluster(n):
- vnc = Matrix(n, n)
- # Step 1: step down to zero
- mat = makeuniform(n)
- rank = countones(mat)
- while rank > 0:
- rank -= 1
- (dummy0, dummy1, x, y) = getminmax(mat, 1.)
- mat[y][x] = 0.
- vnc[y][x] = rank
- # Step 2: step up to n * n
- mat = makeuniform(n)
- rank = countones(mat)
- while rank < n * n:
- (x, y, dummy0, dummy1) = getminmax(mat, 0.)
- mat[y][x] = 1.
- vnc[y][x] = rank
- rank += 1
- return vnc
-
- def vnccol(n):
- return lambda val : ['#fff', '#ddd'][val < n * n / 10]
-
- if chapter(2):
- tmp = makevoidandcluster(14)
- Svg(tmp, vnccol(14)).save("out/fig2-7-1.png", 25)
- ordereddither(grad256bw, tmp).save("out/grad2-7-1.png")
- ordereddither(lena256bw, tmp).save("out/lena2-7-1.png")
- tmp = makevoidandcluster(25)
- Svg(tmp, vnccol(25)).save("out/fig2-7-2.png", 20)
- ordereddither(grad256bw, tmp).save("out/grad2-7-2.png")
- ordereddither(lena256bw, tmp).save("out/lena2-7-2.png")
-
- ##############################################################################
- if chapter(3):
- print "Chapter 3. Error diffusion"
-
- # Output 3.0.1: naive error diffusion
- # Output 3.1.1: standard Floyd-Steinberg
- # Output 3.1.2: serpentine Floyd-Steinberg
- # FIXME: serpentine only works if rows == offset * 2 + 1
- # Output 3.2.1: Fan (modified Floyd-Steinberg)
- # Output 3.2.1b: Shiau-Fan 1
- # Output 3.2.1c: Shiau-Fan 2
- # Output 3.2.2: Jarvis, Judice and Ninke
- # Output 3.2.3: Stucki
- # Output 3.2.4: Burkes
- # Output 3.2.5: Sierra
- # Output 3.2.6: Two-line Sierra
- # Output 3.2.7: Sierra's Filter Lite
- # Output 3.2.8: Atkinson
- def test3xx(src, mat, serpentine):
- (w, h) = src.size()
- dest = Image((w, h))
- lines = len(mat)
- rows = len(mat[0])
- offset = mat[0].index(-1)
- ey = Matrix(w + rows - 1, lines, 0.)
- for y in range(h):
- ex = [0.] * (rows - offset)
- if serpentine and y & 1:
- xrange = range(w - 1, -1, -1)
- else:
- xrange = range(w)
- for x in xrange:
- # Set pixel
- c = src.getGray(x, y) + ex[0] + ey[0][x + offset]
- d = c > 0.5
- dest.setGray(x, y, d)
- error = c - d
- # Propagate first line of error
- for dx in range(rows - offset - 2):
- ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
- ex[rows - offset - 2] = error * mat[0][rows - 1]
- # Propagate next lines
- if serpentine and y & 1:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
- else:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][dx]
- for dy in range(lines - 1):
- ey[dy] = ey[dy + 1]
- ey[lines - 1] = [0.] * (w + rows - 1)
- return dest
-
- ERROR_NAIVE = \
- [[ -1, 1]]
- ERROR_FSTEIN = \
- [[ 0., -1, 7./16],
- [ 3./16, 5./16, 1./16]]
- ERROR_JAJUNI = \
- [[ 0., 0., -1, 7./48, 5./48],
- [ 3./48, 5./48, 7./48, 5./48, 3./48],
- [ 1./48, 3./48, 5./48, 3./48, 1./48]]
- ERROR_FAN = \
- [[ 0., 0., -1, 7./16],
- [ 1./16, 3./16, 5./16, 0.]]
- ERROR_SHIAUFAN = \
- [[ 0., 0., -1, 8./16],
- [ 2./16, 2./16, 4./16, 0.]]
- ERROR_SHIAUFAN2 = \
- [[ 0., 0., 0., -1, 8./16],
- [ 1./16, 1./16, 2./16, 4./16, 0.]]
- ERROR_STUCKI = \
- [[ 0., 0., -1, 8./42, 4./42],
- [ 2./42, 4./42, 8./42, 4./42, 2./42],
- [ 1./42, 2./42, 4./42, 2./42, 1./42]]
- ERROR_BURKES = \
- [[ 0., 0., -1, 8./32, 4./32],
- [ 2./32, 4./32, 8./32, 4./32, 2./32]]
- ERROR_SIERRA = \
- [[ 0., 0., -1, 5./32, 3./32],
- [ 2./32, 4./32, 5./32, 4./32, 2./32],
- [ 0., 2./32, 3./32, 2./32, 0.]]
- ERROR_SIERRA2 = \
- [[ 0., 0., -1, 4./16, 3./16],
- [ 1./16, 2./16, 3./16, 2./16, 1./16]]
- ERROR_FILTERLITE = \
- [[ 0., -1, 2./4],
- [ 1./4, 1./4, 0.]]
- ERROR_ATKINSON = \
- [[ 0., -1, 1./8, 1./8],
- [ 1./8, 1./8, 1./8, 0.],
- [ 0., 1./8, 0., 0.]]
- ## This is Stevenson-Arce in hex lattice
- #ERROR_STAR = \
- # [[ 0., 0., 0., -1, 0., 32./200, 0.],
- # [ 12./200, 0., 26./200, 0., 30./200, 0., 16./200],
- # [ 0., 12./200, 0., 26./200, 0., 12./200, 0.],
- # [ 5./200, 0., 12./200, 0., 12./200, 0., 5./200]]
- ## This is an attempt at implementing Stevenson-Arce in square lattice
- #ERROR_STAR = \
- # [[ 0., 0., -1, 32./200, 0.],
- # [ 6./200, 19./200, 28./200, 23./200, 8./200],
- # [ 0., 12./200, 26./200, 12./200, 0.],
- # [ 2./200, 9./200, 12./200, 9./200, 2./200]]
-
- if chapter(3):
- test3xx(grad256bw, ERROR_NAIVE, False).save("out/grad3-0-1.png")
- test3xx(lena256bw, ERROR_NAIVE, False).save("out/lena3-0-1.png")
-
- Svg(ERROR_FSTEIN).save("out/fig3-1-1.png", 40)
- test3xx(grad256bw, ERROR_FSTEIN, False).save("out/grad3-1-1.png")
- test3xx(lena256bw, ERROR_FSTEIN, False).save("out/lena3-1-1.png")
- test3xx(grad256bw, ERROR_FSTEIN, True).save("out/grad3-1-2.png")
- test3xx(lena256bw, ERROR_FSTEIN, True).save("out/lena3-1-2.png")
-
- Svg(ERROR_JAJUNI).save("out/fig3-1-3.png", 40)
- test3xx(grad256bw, ERROR_JAJUNI, False).save("out/grad3-1-3.png")
- test3xx(lena256bw, ERROR_JAJUNI, False).save("out/lena3-1-3.png")
-
- Svg(ERROR_FAN).save("out/fig3-2-1.png", 40)
- test3xx(grad256bw, ERROR_FAN, False).save("out/grad3-2-1.png")
- test3xx(lena256bw, ERROR_FAN, False).save("out/lena3-2-1.png")
- Svg(ERROR_SHIAUFAN).save("out/fig3-2-1b.png", 40)
- test3xx(grad256bw, ERROR_SHIAUFAN, False).save("out/grad3-2-1b.png")
- test3xx(lena256bw, ERROR_SHIAUFAN, False).save("out/lena3-2-1b.png")
- Svg(ERROR_SHIAUFAN2).save("out/fig3-2-1c.png", 40)
- test3xx(grad256bw, ERROR_SHIAUFAN2, False).save("out/grad3-2-1c.png")
- test3xx(lena256bw, ERROR_SHIAUFAN2, False).save("out/lena3-2-1c.png")
-
- Svg(ERROR_STUCKI).save("out/fig3-2-3.png", 40)
- test3xx(grad256bw, ERROR_STUCKI, False).save("out/grad3-2-3.png")
- test3xx(lena256bw, ERROR_STUCKI, False).save("out/lena3-2-3.png")
-
- Svg(ERROR_BURKES).save("out/fig3-2-4.png", 40)
- test3xx(grad256bw, ERROR_BURKES, False).save("out/grad3-2-4.png")
- test3xx(lena256bw, ERROR_BURKES, False).save("out/lena3-2-4.png")
-
- Svg(ERROR_SIERRA).save("out/fig3-2-5.png", 40)
- test3xx(grad256bw, ERROR_SIERRA, False).save("out/grad3-2-5.png")
- test3xx(lena256bw, ERROR_SIERRA, False).save("out/lena3-2-5.png")
-
- Svg(ERROR_SIERRA2).save("out/fig3-2-6.png", 40)
- test3xx(grad256bw, ERROR_SIERRA2, False).save("out/grad3-2-6.png")
- test3xx(lena256bw, ERROR_SIERRA2, False).save("out/lena3-2-6.png")
-
- Svg(ERROR_FILTERLITE).save("out/fig3-2-7.png", 40)
- test3xx(grad256bw, ERROR_FILTERLITE, False).save("out/grad3-2-7.png")
- test3xx(lena256bw, ERROR_FILTERLITE, False).save("out/lena3-2-7.png")
-
- Svg(ERROR_ATKINSON).save("out/fig3-2-8.png", 40)
- test3xx(grad256bw, ERROR_ATKINSON, False).save("out/grad3-2-8.png")
- test3xx(lena256bw, ERROR_ATKINSON, False).save("out/lena3-2-8.png")
-
- #test3xx(grad256bw, ERROR_STAR, False).save("out/grad3-2-9.png")
- #test3xx(lena256bw, ERROR_STAR, False).save("out/lena3-2-9.png")
-
- #test3xx(grad256bw, ERROR_STAR, False).save("out/grad3-2-9.png")
- #test3xx(lena256bw, ERROR_STAR, False).save("out/lena3-2-9.png")
-
- # Output 3.3.1: Floyd-Steinberg on grey 90%
- # Output 3.3.2: serpentine Floyd-Steinberg on grey 90%
- if chapter(3):
- tmp = Image((128, 128))
- for x, y in rangexy(128, 128):
- tmp.setGray(x, y, 0.90)
- test3xx(tmp, ERROR_FSTEIN, True).getZoom(2).save("out/lena3-3-2.png")
- test3xx(tmp, ERROR_FSTEIN, False).getZoom(2).save("out/lena3-3-1.png")
-
- # Output 3.3.3: Riemersma dither on a Hilbert curve
- # Output 3.3.4: Riemersma dither on a Hilbert 2 curve
- def hilbert(x, y, n):
- d1 = [0, 4, 3, 2, 1]
- d2 = [0, 3, 4, 1, 2]
- m = n/2
-
- if x == n - 1 and y == 0: return 0
- if x == 0 and y == m - 1: return 1
- if x == m - 1 and y == m: return 4
- if x == n - 1 and y == m: return 2
-
- if y >= m: return hilbert(x % m, y - m, m)
- if x < m: return d1[hilbert(y, x, m)]
- else: return d2[hilbert(m - 1 - y, n - 1 - x, m)]
-
- def hilbert2(x, y, n):
- d1 = [0, 2, 1, 3, 4]
- d2 = [0, 1, 2, 4, 3]
- d3 = [0, 2, 1, 4, 3]
- m = n/3
-
- if x == n - 1 and y == n - 1: return 0
- if x == m - 1 and y == m - 1: return 4
- if x == 2 * m - 1 and y == 0: return 4
- if x == n - 1 and y == m - 1: return 1
- if x == 0 and y == 2 * m - 1: return 1
- if x == m and y == m: return 3
- if x == m * 2 and y == m * 2 - 1: return 3
- if x == m - 1 and y == n - 1: return 4
- if x == 2 * m - 1 and y == 2 * m: return 4
-
- if (x < m or x >= m * 2) and (y < m or y >= m * 2):
- return hilbert2(x % m, y % m, m)
- if x >= m and x < m * 2 and y >= m and y < m * 2:
- return d3[hilbert2(2 * m - 1 - x, 2 * m - 1 - y, m)]
- if x >= m and x < m * 2:
- return d1[hilbert2(x - m, m - 1 - (y % m), m)]
- else: # if y >= m and y < m * 2
- return d2[hilbert2(m - 1 - (x % m), y - m, m)]
-
- def riemersma(src, iterator, order):
- (w, h) = src.size()
- dest = Image((w, h))
- q = 16
- r = 16
- size = 1
- while size < w or size < h: size *= order
- coord = [(0, 0), (0, 1), (0, -1), (-1, 0), (1, 0)]
- err = [0] * q
- list = [math.exp(math.log(r) * i / (q - 1)) / r for i in range(q)]
- (x, y) = (0, 0)
- out = False
- while True:
- if not out:
- a = c = src.getGray(x, y)
- for i in range(q):
- a += err[i] * list[i]
- d = a > 0.5
- dest.setGray(x, y, d)
- for i in range(q - 1):
- err[i] = err[i + 1]
- err[q - 1] = c - d
- t = iterator(x, y, size)
- if t == 0:
- break
- dx, dy = coord[t]
- x += dx
- y += dy
- if out:
- if x < w and y < h:
- err = [0] * q
- out = False
- continue
- # Did we fall off the screen?
- out = (x > w + q or y > h + q)
- return dest
-
- if chapter(3):
- riemersma(grad256bw, hilbert, 2).save("out/grad3-3-3.png")
- riemersma(lena256bw, hilbert, 2).save("out/lena3-3-3.png")
- riemersma(grad256bw, hilbert2, 3).save("out/grad3-3-4.png")
- riemersma(lena256bw, hilbert2, 3).save("out/lena3-3-4.png")
-
- # Output 3.3.5: spatial Hilbert dither on a Hilbert curve
- # Output 3.3.6: spatial Hilbert dither on a Hilbert 2 curve
- def spatialhilbert(src, iterator, order):
- (w, h) = src.size()
- dest = Image((w, h))
- q = 16
- size = 1
- while size < w or size < h: size *= order
- coord = [(0, 0), (0, 1), (0, -1), (-1, 0), (1, 0)]
- err = [0] * q
- dx = [0] * q
- dy = [0] * q
- dist = [0] * q
- (x, y) = (0, 0)
- out = False
- while True:
- if not out:
- c = src.getGray(x, y) + err[0]
- d = c > 0.5
- dest.setGray(x, y, d)
- t = iterator(x, y, size)
- if t == 0:
- break
- dx[0], dy[0] = coord[t]
- if not out:
- error = c - d
- errdiv = 0.
- for i in range(q - 1):
- t = coord[iterator(x + dx[i], y + dy[i], size)]
- dx[i + 1] = dx[i] + t[0]
- dy[i + 1] = dy[i] + t[1]
- for i in range(q):
- dist[i] = dx[i] * dx[i] + dy[i] * dy[i]
- errdiv += 1. / dist[i]
- error /= errdiv
- for i in range(q - 1):
- err[i] = err[i + 1] + error / dist[i]
- err[q - 1] = error / dist[q - 1]
- x += dx[0]
- y += dy[0]
- if out:
- if x < w and y < h:
- err = [0] * q
- out = False
- continue
- # Did we fall off the screen?
- out = (x > w + q or y > h + q)
- return dest
-
- if chapter(3):
- spatialhilbert(grad256bw, hilbert, 2).save("out/grad3-3-5.png")
- spatialhilbert(lena256bw, hilbert, 2).save("out/lena3-3-5.png")
- spatialhilbert(grad256bw, hilbert2, 3).save("out/grad3-3-6.png")
- spatialhilbert(lena256bw, hilbert2, 3).save("out/lena3-3-6.png")
-
- # Output 3.3.7: Knuth's dot diffusion
- # Output 3.3.8: Knuth's dot diffusion, sharpen = 0.9
- # Output 3.3.9: Knuth's dot diffusion, sharpen = 0.9, zeta = 0.2
- # Output 3.3.10: serpentine Floyd-Steinberg, sharpen = 0.9
- def sharpen(src, sharpening):
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- total = 0.
- for j in range(-1, 2):
- for i in range(-1, 2):
- total += src.getGray(x + i, y + j)
- total /= 9.
- d = (c - sharpening * total) / (1.0 - sharpening)
- if d < 0.:
- d = 0.
- elif d > 1.:
- d = 1.
- dest.setGray(x, y, d)
- return dest
-
- def test337(src, mat, propagate, zeta):
- (w, h) = src.size()
- dest = Image((w, h))
- dx = len(mat[0])
- dy = len(mat)
- # 0. analyse diffusion matrix to speed up things later
- diff = []
- cx, cy = -1, -1
- for x, y in rangexy(len(propagate[0]), len(propagate)):
- if propagate[y][x] == -1:
- cx, cy = x, y
- for x, y in rangexy(len(propagate[0]), len(propagate)):
- diff.append((x - cx, y - cy, propagate[y][x]))
- # 1. analyse order matrix to get equivalence classes
- nclasses = 0
- for l in mat:
- for v in l:
- if v + 1 > nclasses:
- nclasses = v + 1
- classes = [[] for n in range(nclasses)]
- for x, y in rangexy(w, h):
- classes[mat[y % dy][x % dx]].append((x, y))
- # 2. copy image
- img = [[src.getGray(x, y) for x in range(w)] for y in range(h)]
- aa = Matrix(w, h, 1.)
- # 3. parse all classes
- for l in classes:
- for x, y in l:
- c = img[y][x]
- if aa[y][x] == 1.:
- error = c + 4. * zeta
- else:
- error = c - zeta
- if x > 0 and aa[y][x-1] == 1.: error += zeta
- if y > 0 and aa[y-1][x] == 1.: error += zeta
- if x < w-1 and aa[y][x+1] == 1.: error += zeta
- if y < h-1 and aa[y+1][x] == 1.: error += zeta
- if c + error < 1.:
- aa[y][x] = 0.
- if x > 0 and aa[y][x-1] == 1.: aa[y][x-1] = .5
- if y > 0 and aa[y-1][x] == 1.: aa[y-1][x] = .5
- if x < w-1 and aa[y][x+1] == 1.: aa[y][x+1] = .5
- if y < h-1 and aa[y+1][x] == 1.: aa[y+1][x] = .5
- else:
- error = c - 1.
- # Propagate first line of error
- total = 0
- err = []
- for (i, j, e) in diff:
- if x + i < 0 or x + i >= w \
- or y + j < 0 or y + j >= h:
- continue
- n = mat[(y + j) % dy][(x + i) % dx] - mat[y % dy][x % dx]
- if n <= 0:
- continue
- err.append((i, j, e))
- total += e
- for (i, j, e) in err:
- img[y + j][x + i] += error * e / total
- # 4. copy image, replacing grey with white
- for x, y in rangexy(w, h):
- dest.setGray(x, y, aa[y][x] > 0.)
- return dest
-
- ERROR_DOT = \
- [[1./12, 1./6, 1./12],
- [ 1./6, -1, 1./6],
- [1./12, 1./6, 1./12]]
-
- if chapter(3):
- Svg(ERROR_DOT).save("out/fig3-3-7b.png", 40)
- test337(grad256bw, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/grad3-3-7.png")
- test337(lena256bw, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/lena3-3-7.png")
- tmp = sharpen(grad256bw, 0.9)
- test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/grad3-3-8.png")
- test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.2).save("out/grad3-3-9.png")
- test3xx(tmp, ERROR_FSTEIN, True).save("out/grad3-3-10.png")
- tmp = sharpen(lena256bw, 0.9)
- test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.).save("out/lena3-3-8.png")
- test337(tmp, DITHER_CLUSTER88, ERROR_DOT, 0.2).save("out/lena3-3-9.png")
- test3xx(tmp, ERROR_FSTEIN, True).save("out/lena3-3-10.png")
-
- # Output 3.3.11: omni-directional error diffusion
- def test3311(src):
- w, h = src.size()
- g = { 0: 0, 1: 1, 2: 1 }
- g[-1] = g[2] - g[1]
- g[-2] = g[1] - g[0]
- n = 2
- while g[n] < w and g[n] < h:
- n += 1
- g[n] = g[n - 1] + g[n - 3]
- g[-n] = g[-n + 3] - g[-n + 2]
- u = g[n - 2]
- v = g[n - 1]
- a = [[(i * u + j * v) % g[n] for i in range(g[n])] for j in range(g[n])]
- return a
-
- ERROR_OMNI = \
- [[0.1, 0.2, 0.1],
- [0.1, -1, 0.1],
- [0.1, 0.2, 0.1]]
-
- if chapter(3):
- Svg(ERROR_OMNI).save("out/fig3-3-11.png", 40)
-
- mat = test3311(grad256bw)
- test337(grad256bw, mat, ERROR_OMNI, 0.).save("out/grad3-3-11.png")
-
- mat = test3311(lena256bw)
- tmp = [[str(mat[y][x]) for x in range(16)] for y in range(12)]
- for x in range(16): tmp[11][x] = "..."
- for y in range(12): tmp[y][15] = "..."
- Svg(tmp).save("out/fig3-3-11b.png", 20)
- test337(lena256bw, mat, ERROR_OMNI, 0.).save("out/lena3-3-11.png")
-
- # Output 3.4.1: Ostromoukhov's variable error diffusion
- def test341(src, serpentine):
- m = [[13, 0, 5], [13, 0, 5], [21, 0, 10], [7, 0, 4],
- [8, 0, 5], [47, 3, 28], [23, 3, 13], [15, 3, 8],
- [22, 6, 11], [43, 15, 20], [7, 3, 3], [501, 224, 211],
- [249, 116, 103], [165, 80, 67], [123, 62, 49], [489, 256, 191],
- [81, 44, 31], [483, 272, 181], [60, 35, 22], [53, 32, 19],
- [237, 148, 83], [471, 304, 161], [3, 2, 1], [481, 314, 185],
- [354, 226, 155], [1389, 866, 685], [227, 138, 125], [267, 158, 163],
- [327, 188, 220], [61, 34, 45], [627, 338, 505], [1227, 638, 1075],
- [20, 10, 19], [1937, 1000, 1767], [977, 520, 855], [657, 360, 551],
- [71, 40, 57], [2005, 1160, 1539], [337, 200, 247], [2039, 1240, 1425],
- [257, 160, 171], [691, 440, 437], [1045, 680, 627], [301, 200, 171],
- [177, 120, 95], [2141, 1480, 1083], [1079, 760, 513], [725, 520, 323],
- [137, 100, 57], [2209, 1640, 855], [53, 40, 19], [2243, 1720, 741],
- [565, 440, 171], [759, 600, 209], [1147, 920, 285], [2311, 1880, 513],
- [97, 80, 19], [335, 280, 57], [1181, 1000, 171], [793, 680, 95],
- [599, 520, 57], [2413, 2120, 171], [405, 360, 19], [2447, 2200, 57],
- [11, 10, 0], [158, 151, 3], [178, 179, 7], [1030, 1091, 63],
- [248, 277, 21], [318, 375, 35], [458, 571, 63], [878, 1159, 147],
- [5, 7, 1], [172, 181, 37], [97, 76, 22], [72, 41, 17],
- [119, 47, 29], [4, 1, 1], [4, 1, 1], [4, 1, 1],
- [4, 1, 1], [4, 1, 1], [4, 1, 1], [4, 1, 1],
- [4, 1, 1], [4, 1, 1], [65, 18, 17], [95, 29, 26],
- [185, 62, 53], [30, 11, 9], [35, 14, 11], [85, 37, 28],
- [55, 26, 19], [80, 41, 29], [155, 86, 59], [5, 3, 2],
- [5, 3, 2], [5, 3, 2], [5, 3, 2], [5, 3, 2],
- [5, 3, 2], [5, 3, 2], [5, 3, 2], [5, 3, 2],
- [5, 3, 2], [5, 3, 2], [5, 3, 2], [5, 3, 2],
- [305, 176, 119], [155, 86, 59], [105, 56, 39], [80, 41, 29],
- [65, 32, 23], [55, 26, 19], [335, 152, 113], [85, 37, 28],
- [115, 48, 37], [35, 14, 11], [355, 136, 109], [30, 11, 9],
- [365, 128, 107], [185, 62, 53], [25, 8, 7], [95, 29, 26],
- [385, 112, 103], [65, 18, 17], [395, 104, 101], [4, 1, 1]]
- (w, h) = src.size()
- dest = Image((w, h))
- ey = [0.] * (w + 2)
- for y in range(h):
- ex = 0
- newey = [0.] * (w + 2)
- if serpentine and y & 1:
- xrange = range(w - 1, -1, -1)
- else:
- xrange = range(w)
- for x in xrange:
- # Set pixel
- c = src.getGray(x, y) + ex + ey[x + 1]
- d = c > 0.5
- dest.setGray(x, y, d)
- error = c - d
- i = (int)(c * 255.9999)
- if i > 127:
- i = 255 - i
- (d1, d2, d3) = m[i]
- t = d1 + d2 + d3
- # Propagate error
- ex = error * d1 / t
- if serpentine and y & 1:
- newey[x + 2] += error * d3 / t
- newey[x + 1] += error * d2 / t
- else:
- newey[x] += error * d2 / t
- newey[x + 1] += error * d3 / t
- ey = newey
- return dest
-
- if chapter(3):
- mat = [[0, -1,
- '<tspan style="font-style:italic">d1(i)</tspan>'],
- ['<tspan style="font-style:italic">d2(i)</tspan>',
- '<tspan style="font-style:italic">d3(i)</tspan>', 0]]
- Svg(mat).save("out/fig3-4-1.png", 40)
- test341(grad256bw, True).save("out/grad3-4-1.png")
- test341(lena256bw, True).save("out/lena3-4-1.png")
-
- def test351(src, mat, tiles, diff, serpentine, glob):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- ntiles = len(tiles)
- ty = len(tiles[0])
- tx = len(tiles[0][0])
- cur = Matrix(tx, ty, 0.)
- w, h = w / tx, h / ty
- lines = len(mat)
- rows = len(mat[0])
- offset = mat[0].index(-1)
- ey = Matrix(w + rows - 1, lines, 0.)
- for y in range(h):
- ex = [0.] * (rows - offset)
- if serpentine and y & 1:
- xrange = range(w - 1, -1, -1)
- else:
- xrange = range(w)
- for x in xrange:
- # Get block value
- for i, j in rangexy(tx, ty):
- e = ex[0] + ey[0][x + offset]
- cur[j][i] = src.getGray(x * tx + i, y * ty + j) + diff[j][i] * e
- # Compute closest block and associated error
- dist = tx * ty
- for n in range(ntiles):
- e = 0.
- d1 = 0.
- d2 = random.random() / 1000.
- for i, j in rangexy(tx, ty):
- e += cur[j][i] - tiles[n][j][i]
- d1 += diff[j][i] * (cur[j][i] - tiles[n][j][i])
- d2 += diff[j][i] * abs(cur[j][i] - tiles[n][j][i])
- if glob:
- d = abs(d1) + d2 / 1000.
- else:
- d = abs(d1) / (tx * ty) + d2
- if d < dist:
- dist = d
- error = e
- best = n
- # Set pixel
- for i, j in rangexy(tx, ty):
- dest.setGray(x * tx + i, y * ty + j, tiles[best][j][i])
- # Propagate first line of error
- for dx in range(rows - offset - 2):
- ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
- ex[rows - offset - 2] = error * mat[0][rows - 1]
- # Propagate next lines
- if serpentine and y & 1:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
- else:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][dx]
- for dy in range(lines - 1):
- ey[dy] = ey[dy + 1]
- ey[lines - 1] = [0.] * (w + rows - 1)
- return dest
-
- LINES22 = \
- [[[0., 0.], [0., 0.]],
- [[0., 1.], [0., 1.]],
- [[1., 0.], [1., 0.]],
- [[1., 1.], [0., 0.]],
- [[0., 0.], [1., 1.]],
- [[1., 1.], [1., 1.]]]
-
- SQUARES33 = \
- [[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]],
- [[1., 0., 0.], [0., 0., 0.], [0., 0., 0.]],
- [[0., 1., 0.], [0., 0., 0.], [0., 0., 0.]],
- [[0., 0., 1.], [0., 0., 0.], [0., 0., 0.]],
- [[0., 0., 0.], [1., 0., 0.], [0., 0., 0.]],
- [[0., 0., 0.], [0., 1., 0.], [0., 0., 0.]],
- [[0., 0., 0.], [0., 0., 1.], [0., 0., 0.]],
- [[0., 0., 0.], [0., 0., 0.], [1., 0., 0.]],
- [[0., 0., 0.], [0., 0., 0.], [0., 1., 0.]],
- [[0., 0., 0.], [0., 0., 0.], [0., 0., 1.]],
- [[1., 1., 0.], [1., 1., 0.], [0., 0., 0.]],
- [[0., 1., 1.], [0., 1., 1.], [0., 0., 0.]],
- [[0., 0., 0.], [1., 1., 0.], [1., 1., 0.]],
- [[0., 0., 0.], [0., 1., 1.], [0., 1., 1.]],
- [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]
-
- TILES22 = []
- for n in range(1 << 4):
- mat = Matrix(2, 2)
- for x, y in rangexy(2, 2):
- if n & (1 << (y * 2 + x)):
- mat[y][x] = 1.
- TILES22.append(mat)
-
- DIFF_EVEN22 = \
- [[1./4, 1./4],
- [1./4, 1./4]]
-
- DIFF_EVEN33 = \
- [[1./9, 1./9, 1./9],
- [1./9, 1./9, 1./9],
- [1./9, 1./9, 1./9]]
-
- if chapter(3):
- def colorise(val):
- if type(val) == str:
- return '#fbb'
- return '#fff'
-
- mat = [[.25, .25],
- [.25, .25]]
- Svg(mat).save("out/fig3-5-2b.png", 40)
- mat = [[0, 0, 'a', 'b', 7./64, 7./64],
- [0, 0, 'c', 'd', 7./64, 7./64],
- [3./64, 3./64, 5./64, 5./64, 1./64, 1./64],
- [3./64, 3./64, 5./64, 5./64, 1./64, 1./64]]
- Svg(mat, colorise).save("out/fig3-5-2.png", 40)
-
- test351(grad256bw, [[-1, 0]],
- LINES22, DIFF_EVEN22, True, True).save("out/grad3-5-1.png")
- test351(lena256bw, [[-1, 0]],
- LINES22, DIFF_EVEN22, True, True).save("out/lena3-5-1.png")
- test351(grad256bw, ERROR_FSTEIN,
- LINES22, DIFF_EVEN22, True, True).save("out/grad3-5-2.png")
- test351(lena256bw, ERROR_FSTEIN,
- LINES22, DIFF_EVEN22, True, True).save("out/lena3-5-2.png")
-
- test351(grad256bw, ERROR_FSTEIN,
- SQUARES33, DIFF_EVEN33, True, True).save("out/grad3-5-3.png")
- test351(lena256bw, ERROR_FSTEIN,
- SQUARES33, DIFF_EVEN33, True, True).save("out/lena3-5-3.png")
-
- test351(grad256bw, ERROR_FSTEIN,
- TILES22, DIFF_EVEN22, True, True).save("out/grad3-5-4.png")
- test351(lena256bw, ERROR_FSTEIN,
- TILES22, DIFF_EVEN22, True, True).save("out/lena3-5-4.png")
-
- DIFF_WEIGHTED22 = \
- [[51./128, 33./128],
- [25./128, 19./128]]
-
- if chapter(3):
- mat = [[6./16, 5./16],
- [3./16, 2./16]]
- Svg(mat).save("out/fig3-5-5b.png", 40)
- mat = [[0, 0, 'a', 'b', 6*7./256, 5*7./256],
- [0, 0, 'c', 'd', 3*7./256, 2*7./256],
- [6*3./256, 5*3./256, 6*5./256, 5*5./256, 6*1./256, 5*1./256],
- [3*3./256, 2*3./256, 3*5./256, 2*5./256, 3*1./256, 2*1./256]]
- Svg(mat, colorise).save("out/fig3-5-5.png", 40)
-
- test351(grad256bw, ERROR_FSTEIN,
- TILES22, DIFF_WEIGHTED22, True, False).save("out/grad3-5-5.png")
- test351(lena256bw, ERROR_FSTEIN,
- TILES22, DIFF_WEIGHTED22, True, False).save("out/lena3-5-5.png")
-
- # Output 3.6.1: sub-block error diffusion
- def subblock(src, tiles, propagate, diff, gamma):
- (w, h) = src.size()
- # Gamma correction
- if gamma:
- ctoi = Gamma.CtoI
- itoc = Gamma.ItoC
- else:
- ctoi = itoc = lambda x : x
- # Propagating the error to a temporary buffer is becoming more and
- # more complicated. We decide to use an intermediate matrix instead.
- tmp = Matrix(w, h, 0.)
- for x, y in rangexy(w, h):
- tmp[y][x] = ctoi(src.getGray(x, y))
- dest = Image((w, h))
- # Analyse tile list
- ntiles = len(tiles)
- ty = len(tiles[0])
- tx = len(tiles[0][0])
- cur = Matrix(tx, ty, 0.)
- w, h = w / tx, h / ty
- # Analyse error propagate list
- for x, y in rangexy(w, h):
- # Get block value
- for i, j in rangexy(tx, ty):
- cur[j][i] = itoc(tmp[y * ty + j][x * tx + i])
- # Select closest block
- dist = tx * ty
- for n in range(ntiles):
- d = 0.
- e = 0.
- for i, j in rangexy(tx, ty):
- d += cur[j][i] - tiles[n][j][i]
- e += diff[j][i] * abs(cur[j][i] - tiles[n][j][i])
- if abs(d) / (tx * ty) + e < dist:
- dist = abs(d) / (tx * ty) + e
- best = n
- # Set pixel
- for i, j in rangexy(tx, ty):
- dest.setGray(x * tx + i, y * ty + j, tiles[best][j][i])
- # Propagate error
- for i, j in rangexy(tx, ty):
- e = ctoi(cur[j][i]) - ctoi(tiles[best][j][i])
- m = propagate[j][i]
- for px, py in rangexy(len(m[0]), len(m)):
- if m[py][px] == 0:
- continue
- if m[py][px] == -1:
- cx, cy = px, py
- continue
- tmpx = x * tx + i + px - cx
- tmpy = y * ty + j + py - cy
- if tmpx > w * tx - 1 or tmpy > h * ty - 1:
- continue
- tmp[tmpy][tmpx] += m[py][px] * e
- return dest
-
- ERROR_SUBFS22 = \
- [[[[0, -1, 0, 8./64],
- [0, 0, 0, 10./64],
- [7./64, 22./64, 15./64, 2./64]],
- [[0, 0, -1, 20./64],
- [0, 0, 0, 14./64],
- [2./64, 11./64, 15./64, 2./64]]],
- [[[0, 0, 0, 0./64],
- [0, -1, 0, 6./64],
- [12./64, 32./64, 13./64, 1./64]],
- [[0, 0, 0, 0./64],
- [0, 0, -1, 20./64],
- [0./64, 12./64, 28./64, 4./64]]]]
-
- if chapter(3):
- subblock(grad256bw, TILES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/grad3-6-1.png")
- subblock(lena256bw, TILES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/lena3-6-1.png")
-
- subblock(grad256bw, LINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/grad3-6-2.png")
- subblock(lena256bw, LINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, False).save("out/lena3-6-2.png")
-
- def colorise(val):
- if val == '':
- return '#ccc'
- if type(val) == str:
- return '#fbb'
- return '#fff'
-
- # XXX: hack, we modify ERROR_SUBFS22 because it's so much more convenient
- for x, y in rangexy(2, 2):
- for j in range(2):
- for i in range(1, 3):
- ERROR_SUBFS22[y][x][j][i] = ''
- ERROR_SUBFS22[y][x][y][1 + x] = chr(ord('a') + 2 * y + x)
- Svg(ERROR_SUBFS22[0][0], colorise).save("out/fig3-6-1a.png", 40)
- Svg(ERROR_SUBFS22[0][1], colorise).save("out/fig3-6-1b.png", 40)
- Svg(ERROR_SUBFS22[1][0], colorise).save("out/fig3-6-1c.png", 40)
- Svg(ERROR_SUBFS22[1][1], colorise).save("out/fig3-6-1d.png", 40)
- for x, y in rangexy(2, 2):
- for j in range(2):
- for i in range(1, 3):
- ERROR_SUBFS22[y][x][j][i] = 0
- ERROR_SUBFS22[y][x][y][1 + x] = -1
-
- ERROR_SUBFS33 = \
- [[[[ 0, -1, 0, 0, 2./64],
- [ 0, 0, 0, 0, 5./64],
- [ 0, 0, 0, 0, 6./64],
- [ 5./64, 17./64, 17./64, 9./64, 1./64]],
- [[ 0, 0, -1, 0, 6./64],
- [ 0, 0, 0, 0, 9./64],
- [ 0, 0, 0, 0, 8./64],
- [ 2./64, 11./64, 16./64, 11./64, 1./64]],
- [[ 0, 0, 0, -1, 20./64],
- [ 0, 0, 0, 0, 14./64],
- [ 0, 0, 0, 0, 8./64],
- [ 0, 3./64, 9./64, 9./64, 1./64]]],
- [[[ 0, 0, 0, 0, 0],
- [ 0, -1, 0, 0, 2./64],
- [ 0, 0, 0, 0, 5./64],
- [ 7./64, 23./64, 18./64, 8./64, 1./64]],
- [[ 0, 0, 0, 0, 0],
- [ 0, 0, -1, 0, 6./64],
- [ 0, 0, 0, 0, 9./64],
- [ 2./64, 12./64, 21./64, 13./64, 1./64]],
- [[ 0, 0, 0, 0, 0],
- [ 0, 0, 0, -1, 20./64],
- [ 0, 0, 0, 0, 14./64],
- [ 0, 2./64, 11./64, 15./64, 2./64]]],
- [[[ 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0],
- [ 0, -1, 0, 0, 2./64],
- [12./64, 32./64, 14./64, 4./64, 0]],
- [[ 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0],
- [ 0, 0, -1, 0, 6./64],
- [ 0, 12./64, 32./64, 13./64, 1./64]],
- [[ 0, 0, 0, 0, 0],
- [ 0, 0, 0, 0, 0],
- [ 0, 0, 0, -1, 20./64],
- [ 0, 0, 12./64, 28./64, 4./64]]]]
-
- TILES33 = []
- for n in range(1 << 9):
- mat = Matrix(3, 3)
- for x, y in rangexy(3, 3):
- if n & (1 << (y * 3 + x)):
- mat[y][x] = 1.
- TILES33.append(mat)
-
- DIFF_WEIGHTED33 = \
- [[15./64, 10./64, 6./64],
- [10./64, 6./64, 4./64],
- [ 6./64, 4./64, 3./64]]
-
- if chapter(3):
- subblock(grad256bw, TILES33,
- ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/grad3-6-3.png")
- subblock(lena256bw, TILES33,
- ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/lena3-6-3.png")
- subblock(grad256bw, SQUARES33,
- ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/grad3-6-4.png")
- subblock(lena256bw, SQUARES33,
- ERROR_SUBFS33, DIFF_WEIGHTED33, False).save("out/lena3-6-4.png")
-
- # XXX: hack, we modify ERROR_SUBFS33 because it's so much more convenient
- for x, y in rangexy(3, 3):
- for j in range(3):
- for i in range(1, 4):
- ERROR_SUBFS33[y][x][j][i] = ''
- ERROR_SUBFS33[y][x][y][1 + x] = chr(ord('a') + 3 * y + x)
- Svg(ERROR_SUBFS33[0][0], colorise).save("out/fig3-6-3a.png", 30)
- Svg(ERROR_SUBFS33[0][1], colorise).save("out/fig3-6-3b.png", 30)
- Svg(ERROR_SUBFS33[0][2], colorise).save("out/fig3-6-3c.png", 30)
- Svg(ERROR_SUBFS33[1][0], colorise).save("out/fig3-6-3d.png", 30)
- Svg(ERROR_SUBFS33[1][1], colorise).save("out/fig3-6-3e.png", 30)
- Svg(ERROR_SUBFS33[1][2], colorise).save("out/fig3-6-3f.png", 30)
- Svg(ERROR_SUBFS33[2][0], colorise).save("out/fig3-6-3g.png", 30)
- Svg(ERROR_SUBFS33[2][1], colorise).save("out/fig3-6-3h.png", 30)
- Svg(ERROR_SUBFS33[2][2], colorise).save("out/fig3-6-3i.png", 30)
- for x, y in rangexy(3, 3):
- for j in range(3):
- for i in range(1, 4):
- ERROR_SUBFS33[y][x][j][i] = 0
- ERROR_SUBFS33[y][x][y][1 + x] = -1
-
- ##############################################################################
- if chapter(4):
- print "Chapter 4. Model-based dithering"
-
- # Output 4.1.1: gaussian HVS applied to 8x8 Bayer dither, sigma = 1
- # Output 4.1.2: gaussian HVS applied to 8x8 Bayer dither, sigma = 2
- def gaussian(n, sigma):
- m = Matrix(n, n, 0.)
- t = 0.
- for x, y in rangexy(n, n):
- i = x - (float)(n - 1.) / 2.
- j = y - (float)(n - 1.) / 2.
- v = math.pow(math.e, - (i * i + j * j) / (2. * sigma * sigma))
- m[y][x] = v
- t += v
- for x, y in rangexy(n, n):
- m[y][x] /= t
- return m
-
- def convolution(src, m):
- (w, h) = src.size()
- dest = Image((w, h))
- dy = len(m)
- dx = len(m[0])
- srcmat = [[src.getGray(x, y) for x in range(w)] for y in range(h)]
- for x, y in rangexy(w, h):
- c = t = 0.
- for i, j in rangexy(dx, dy):
- u = i - (dx - 1) / 2
- v = j - (dy - 1) / 2
- if x + u >= w or y + v >= h or x + u < 0 or y + v < 0:
- continue
- c += srcmat[y + v][x + u] * m[j][i]
- t += m[j][i]
- dest.setGray(x, y, c / t)
- return dest
-
- if chapter(4):
- tmp = Image("out/grad2-3-1b.png")
- convolution(tmp, gaussian(11, 1.)).save("out/grad4-1-1.png")
- convolution(tmp, gaussian(11, 2.)).save("out/grad4-1-2.png")
- tmp = Image("out/lena2-3-1b.png")
- convolution(tmp, gaussian(11, 1.)).save("out/lena4-1-1.png")
- convolution(tmp, gaussian(11, 2.)).save("out/lena4-1-2.png")
-
- # Output 4.2.1: direct binary search, iteration 0
- # Output 4.2.2: direct binary search, iteration 1
- # Output 4.2.3: direct binary search, iteration 2
- # Output 4.2.4: direct binary search, iteration 5
- def test42x(src):
- random.seed(0)
- (w, h) = src.size()
- dest = Image((w, h))
- for x, y in rangexy(w, h):
- c = src.getGray(x, y) + random.random() - 0.5
- d = c > 0.5
- dest.setGray(x, y, d)
- return dest
-
- def test42y(src, dest, hvs):
- threshold = 0.4
- kernel = Matrix(8, 8, 0.) # have two borders of zeroes
- for i, j in rangexy(6, 6):
- kernel[j][i] = hvs(i * i + j * j)
- (w, h) = src.size()
- # Build fast pixel lookup tables
- srcmat = Matrix(w, h, 0.)
- destmat = Matrix(w, h, 0.)
- for x, y in rangexy(w, h):
- srcmat[y][x] = src.getGray(x, y)
- destmat[y][x] = dest.getGray(x, y)
- # Build human perception model for both source and destination
- srchvs = Matrix(w, h, 0.)
- desthvs = Matrix(w, h, 0.)
- for x, y in rangexy(w, h):
- srcp = destp = 0.
- for j in range(-5, 6):
- if y + j < 0 or y + j >= h:
- continue
- for i in range(-3, 4):
- if x + i < 0 or x + i >= w:
- continue
- m = kernel[abs(j)][abs(i)]
- srcp += m * srcmat[y + j][x + i]
- destp += m * destmat[y + j][x + i]
- srchvs[y][x] = srcp
- desthvs[y][x] = destp
- swaps = toggles = 0
- for x, y in rangexy(w, h):
- d = destmat[y][x]
- best = 0.
- # Compute the effect of a toggle
- e = 0.
- for j in range(-5, 6):
- if y + j < 0 or y + j >= h:
- continue
- for i in range(-5, 6):
- if x + i < 0 or x + i >= w:
- continue
- m = kernel[abs(j)][abs(i)]
- p = srchvs[y + j][x + i]
- q1 = desthvs[y + j][x + i]
- q2 = q1 - m * d + m * (1. - d)
- e += abs(q1 - p) - abs(q2 - p)
- if e > best:
- best = e
- op = False
- # Compute the effect of swaps
- for dx, dy in [(0, 1), (0, -1), (-1, 0), (1, 0)]:
- if y + dy < 0 or y + dy >= h or x + dx < 0 or x + dx >= w:
- continue
- d2 = destmat[y + dy][x + dx]
- if d2 == d:
- continue
- e = 0.
- for j in range(-6, 7):
- for i in range(-6, 7):
- if y + j < 0 or y + j >= h or x + i < 0 or x + i >= w:
- continue
- ma = kernel[abs(j)][abs(i)]
- mb = kernel[abs(j - dy)][abs(i - dx)]
- p = srchvs[y + j][x + i]
- q1 = desthvs[y + j][x + i]
- q2 = q1 - ma * d + ma * d2 - mb * d2 + mb * d
- e += abs(q1 - p) - abs(q2 - p)
- if e > best:
- best = e
- op = (dx, dy)
- # Apply the change if interesting
- if best <= 0.:
- continue
- if op:
- dx, dy = op
- d2 = destmat[y + dy][x + dx]
- destmat[y + dy][x + dx] = d
- else:
- d2 = 1. - d
- destmat[y][x] = d2
- for j in range(-5, 6):
- for i in range(-5, 6):
- m = kernel[abs(j)][abs(i)]
- if y + j >= 0 and y + j < h and x + i >= 0 and x + i < w:
- desthvs[y + j][x + i] -= m * d
- desthvs[y + j][x + i] += m * d2
- if op and y + dy + j >= 0 and y + dy + j < h \
- and x + dx + i >= 0 and x + dx + i < w:
- desthvs[y + dy + j][x + dx + i] -= m * d2
- desthvs[y + dy + j][x + dx + i] += m * d
- for x, y in rangexy(w, h):
- dest.setGray(x, y, destmat[y][x])
- return dest
-
- if chapter(4):
- hvs = lambda x: math.pow(math.e, - math.sqrt(x))
-
- tmp = test42x(grad256bw)
- tmp.save("out/grad4-2-1.png")
- tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-2.png")
- tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-3.png")
- for n in range(3): tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-4.png")
-
- tmp = test42x(lena256bw)
- tmp.save("out/lena4-2-1.png")
- tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-2.png")
- tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-3.png")
- for n in range(3): tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-4.png")
-
- if chapter(4):
- hvs = lambda x: math.pow(math.e, -x / 2.)
- tmp = test42x(grad256bw)
- for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-5.png")
- tmp = test42x(lena256bw)
- for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-5.png")
-
- if chapter(4):
- hvs = lambda x: math.pow(math.e, -x / 4.5)
- tmp = test42x(grad256bw)
- for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-6.png")
- tmp = test42x(lena256bw)
- for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-6.png")
-
- if chapter(4):
- hvs = lambda x: math.pow(math.e, -x / 8.)
- tmp = test42x(grad256bw)
- for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-7.png")
- tmp = test42x(lena256bw)
- for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-7.png")
-
- if chapter(4):
- hvs = lambda x: math.pow(math.e, -x / 8.) + 2. * math.pow(math.e, -x / 1.5)
- tmp = test42x(grad256bw)
- for n in range(5): tmp = test42y(grad256bw, tmp, hvs)
- tmp.save("out/grad4-2-8.png")
- tmp = test42x(lena256bw)
- for n in range(5): tmp = test42y(lena256bw, tmp, hvs)
- tmp.save("out/lena4-2-8.png")
-
- # Chapter 4.3: RMSE computations
- def rmse(gray, dither):
- (w, h) = gray.size()
- error = 0.
- for y in range(5, h - 5):
- for x in range(5, w - 5):
- c = gray.getGray(x, y)
- d = dither.getGray(x, y)
- error += (c - d) * (c - d)
- return error / ((w - 10) * (h - 10))
-
- if chapter(4):
- sigmas = [1., 1.5, 2.]
- tmp = [convolution(lena256bw, gaussian(11, s)) for s in sigmas]
- for name in ["1-1-1", "1-1-2", "1-1-3", "1-3-1", "1-4-1", "1-4-2",
- "2-1-1", "2-3-0", "2-3-1", "2-3-1b", "2-3-2", "2-3-2b",
- "2-3-3", "2-4-1", "2-4-2", "2-5-1", "2-5-2", "2-5-3",
- "2-5-4", "2-6-1", "2-6-2", "2-6-3", "2-6-4", "2-6-5",
- "2-6-6", "2-7-1", "2-7-2",
- "3-0-1", "3-1-1", "3-1-2", "3-1-3", "3-2-1", "3-2-1b",
- "3-2-1c", "3-2-3", "3-2-4", "3-2-5", "3-2-6", "3-2-7",
- "3-2-8", "3-3-3", "3-3-4", "3-3-5", "3-3-6", "3-3-7",
- "3-3-8", "3-3-9", "3-3-10", "3-3-11", "3-4-1", "3-5-1",
- "3-5-2", "3-5-3", "3-5-4", "3-5-5", "3-6-1", "3-6-2",
- "3-6-3", "3-6-4",
- "4-2-2", "4-2-3", "4-2-4", "4-2-5", "4-2-6", "4-2-7",
- "4-2-8"]:
- img = Image("out/lena" + name + ".png")
- for i in range(3):
- tmp2 = convolution(img, gaussian(11, sigmas[i]))
- err = 100. * rmse(tmp[i], tmp2)
- print "[ERR] %.5f" % (err,)
-
- ##############################################################################
- if chapter(5):
- print "Chapter 5. Greyscale dithering"
-
- # Output 5.0.1: 4x4 Bayer dithering, 3 colours
- def test501(src, mat):
- (w, h) = src.size()
- dest = Image((w, h))
- dx = len(mat[0])
- dy = len(mat)
- for x, y in rangexy(w, h):
- c = src.getGray(x, y)
- threshold = (1. + mat[y % dy][x % dx]) / (dx * dy + 1)
- if c < 0.5:
- c = 0.5 * (c > threshold / 2)
- else:
- c = 0.5 + 0.5 * (c > 0.5 + threshold / 2)
- dest.setGray(x, y, c)
- return dest
-
- if chapter(5):
- test501(grad256bw, DITHER_BAYER88).save("out/grad5-0-1.png")
- test501(lena256bw, DITHER_BAYER88).save("out/lena5-0-1.png")
-
- # Output 5.0.2: standard Floyd-Steinberg, 3 colours
- def test502(src, mat, serpentine):
- (w, h) = src.size()
- dest = Image((w, h))
- lines = len(mat)
- rows = len(mat[0])
- offset = mat[0].index(-1)
- ey = Matrix(w + rows - 1, lines, 0.)
- for y in range(h):
- ex = [0.] * (rows - offset)
- if serpentine and y & 1:
- xrange = range(w - 1, -1, -1)
- else:
- xrange = range(w)
- for x in xrange:
- # Set pixel
- c = src.getGray(x, y) + ex[0] + ey[0][x + offset]
- d = 0.5 * (c > 0.25) + 0.5 * (c > 0.75)
- dest.setGray(x, y, d)
- error = c - d
- # Propagate first line of error
- for dx in range(rows - offset - 2):
- ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
- ex[rows - offset - 2] = error * mat[0][rows - 1]
- # Propagate next lines
- if serpentine and y & 1:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
- else:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][dx]
- for dy in range(lines - 1):
- ey[dy] = ey[dy + 1]
- ey[lines - 1] = [0.] * (w + rows - 1)
- return dest
-
- if chapter(5):
- test502(grad256bw, ERROR_FSTEIN, True).save("out/grad5-0-2.png")
- test502(lena256bw, ERROR_FSTEIN, True).save("out/lena5-0-2.png")
-
- # Pattern 5.1.1: gamma-corrected 50% grey, black-white halftone, 50% grey
- if chapter(5):
- dest = Image((240, 80))
- for y in range(80):
- for x in range(80):
- dest.setGray(x, y, Gamma.ItoC(0.5))
- for x in range(80, 160):
- c = (x + y) & 1
- dest.setGray(x, y, c)
- for x in range(160, 240):
- dest.setGray(x, y, 0.5)
- dest.save("out/pat5-1-1.png")
-
- # Output 5.2.1: gamma-corrected 2-colour Floyd-Steinberg
- # Output 5.2.2: gamma-corrected 3-colour Floyd-Steinberg
- # Output 5.2.3: gamma-corrected 4-colour Floyd-Steinberg
- def test52x(src, mat, serpentine, threshold):
- (w, h) = src.size()
- dest = Image((w, h))
- lines = len(mat)
- rows = len(mat[0])
- offset = mat[0].index(-1)
- ey = Matrix(w + rows - 1, lines, 0.)
- for y in range(h):
- ex = [0.] * (rows - offset)
- if serpentine and y & 1:
- xrange = range(w - 1, -1, -1)
- else:
- xrange = range(w)
- for x in xrange:
- # Set pixel
- c = Gamma.CtoI(src.getGray(x, y)) + ex[0] + ey[0][x + offset]
- d = threshold(c)
- dest.setGray(x, y, Gamma.ItoC(d))
- error = c - d
- # Propagate first line of error
- for dx in range(rows - offset - 2):
- ex[dx] = ex[dx + 1] + error * mat[0][offset + 1 + dx]
- ex[rows - offset - 2] = error * mat[0][rows - 1]
- # Propagate next lines
- if serpentine and y & 1:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][rows - 1 - dx]
- else:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx] += error * mat[dy][dx]
- for dy in range(lines - 1):
- ey[dy] = ey[dy + 1]
- ey[lines - 1] = [0.] * (w + rows - 1)
- return dest
-
- if chapter(5):
- test52x(grad256bw, ERROR_FSTEIN, True, Gamma.Cto2).save("out/grad5-2-1.png")
- test52x(lena256bw, ERROR_FSTEIN, True, Gamma.Cto2).save("out/lena5-2-1.png")
- test52x(grad256bw, ERROR_FSTEIN, True, Gamma.Cto3).save("out/grad5-2-2.png")
- test52x(lena256bw, ERROR_FSTEIN, True, Gamma.Cto3).save("out/lena5-2-2.png")
- test52x(grad256bw, ERROR_FSTEIN, True, Gamma.Cto4).save("out/grad5-2-3.png")
- test52x(lena256bw, ERROR_FSTEIN, True, Gamma.Cto4).save("out/lena5-2-3.png")
-
- # Output 5.3.1: full 4-colour block error diffusion
- GREY22 = []
- for n in range(4*4*4*4):
- vals = [0., 0.333, 0.666, 1.]
- a, b, c, d = n & 3, (n >> 2) & 3, (n >> 4) & 3, (n >> 6) & 3
- GREY22.append([[vals[a], vals[b]], [vals[c], vals[d]]])
-
- if chapter(5):
- subblock(grad256bw, GREY22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/grad5-3-1.png")
- subblock(lena256bw, GREY22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/lena5-3-1.png")
-
- # Output 5.3.2: 4-colour block error diffusion with only line tiles
- GREYLINES22 = []
- for n in range(4*4*4*4):
- vals = [0., 0.333, 0.666, 1.]
- a, b, c, d = n & 3, (n >> 2) & 3, (n >> 4) & 3, (n >> 6) & 3
- if (a != b or c != d) and (a != c or b != d):
- continue
- GREYLINES22.append([[vals[a], vals[b]], [vals[c], vals[d]]])
-
- if chapter(5):
- subblock(grad256bw, GREYLINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/grad5-3-2.png")
- subblock(lena256bw, GREYLINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22, True).save("out/lena5-3-2.png")
-
- ##############################################################################
- if chapter(6):
- print "Chapter 6. Colour dithering"
-
- # Pattern 6.1.1: 8-colour palette
- if chapter(6):
- dest = Image((512, 64))
- for x in range(512):
- d = x / 64
- r = (d & 2) >> 1
- g = (d & 4) >> 2
- b = d & 1
- for y in range(64):
- dest.setRgb(x, y, r, g, b)
- dest.save("out/pat6-1-1.png")
-
- # Figure 6.1.1: 128x128 Lena
- # Figure 6.1.2a: red channel
- # Figure 6.1.2b: green channel
- # Figure 6.1.2c: blue channel
- # Figure 6.1.3a: red channel promoted to greyscale
- # Figure 6.1.3b: green channel promoted to greyscale
- # Figure 6.1.3c: blue channel promoted to greyscale
- # Figure 6.1.4a: dithered red channel
- # Figure 6.1.4b: dithered green channel
- # Figure 6.1.4c: dithered blue channel
- # Figure 6.1.5: combined dithered channels
- if chapter(6):
- tmp = gammascale(lena256, 2)
- tmp.save("out/fig6-1-1.png")
- (w, h) = tmp.size()
- dst = [Image((w, h), True) for i in range(3)]
- for x, y in rangexy(w, h):
- rgb = tmp.getRgb(x, y)
- dst[0].setRgb(x, y, rgb[0], 0, 0)
- dst[1].setRgb(x, y, 0, rgb[1], 0)
- dst[2].setRgb(x, y, 0, 0, rgb[2])
- dst[0].save("out/fig6-1-2a.png")
- dst[1].save("out/fig6-1-2b.png")
- dst[2].save("out/fig6-1-2c.png")
- for x, y in rangexy(w, h):
- for i in range(3):
- rgb = dst[i].getRgb(x, y)
- dst[i].setRgb(x, y, rgb[i], rgb[i], rgb[i])
- dst[0].save("out/fig6-1-3a.png")
- dst[1].save("out/fig6-1-3b.png")
- dst[2].save("out/fig6-1-3c.png")
- for i in range(3):
- dst[i] = test52x(dst[i], ERROR_FSTEIN, True, Gamma.Cto2)
- dst[0].save("out/fig6-1-4a.png")
- dst[1].save("out/fig6-1-4b.png")
- dst[2].save("out/fig6-1-4c.png")
- for x, y in rangexy(w, h):
- for i in range(3):
- rgb = [0., 0., 0.]
- rgb[i] = (dst[i].getRgb(x, y))[i]
- dst[i].setRgb(x, y, *rgb)
- dst[0].save("out/fig6-1-5a.png")
- dst[1].save("out/fig6-1-5b.png")
- dst[2].save("out/fig6-1-5c.png")
- for x, y in rangexy(w, h):
- rgb = [0., 0., 0.]
- for i in range(3):
- rgb[i] = (dst[i].getRgb(x, y))[i]
- tmp.setRgb(x, y, *rgb)
- tmp.save("out/fig6-1-6.png")
-
- # Output 6.1.1: 8-colour Floyd-Steinberg RGB dithering
- # Output 6.1.2: 8-colour gamma-corrected Floyd-Steinberg RGB dithering
- def test61x(src, mat, func):
- (w, h) = src.size()
- dest = Image((w, h))
- tmp = [Image((w, h)), Image((w, h)), Image((w, h))]
- for x, y in rangexy(w, h):
- rgb = src.getRgb(x, y)
- for i in range(3):
- tmp[i].setGray(x, y, rgb[i])
- for i in range(3):
- tmp[i] = func(tmp[i], mat, True, Gamma.Cto2)
- for x, y in rangexy(w, h):
- (r, g, b) = [tmp[i].getGray(x, y) for i in range(3)]
- dest.setRgb(x, y, r, g, b)
- return dest
-
- def test61y(src, mat, serpentine, threshold):
- return test3xx(src, mat, serpentine)
-
- if chapter(6):
- test61x(grad256, ERROR_FSTEIN, test61y).save("out/grad6-1-1.png")
- test61x(lena256, ERROR_FSTEIN, test61y).save("out/lena6-1-1.png")
- test61x(grad256, ERROR_FSTEIN, test52x).save("out/grad6-1-2.png")
- test61x(lena256, ERROR_FSTEIN, test52x).save("out/lena6-1-2.png")
-
- # Pattern 6.2.1: different colours give the same result
- if chapter(6):
- dest = Image((320, 160))
- for x in range(80):
- for y in range(80):
- r = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 7
- g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
- b = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for y in range(80, 160):
- r = DITHER_BAYER44[y % 4][x % 4] > 7
- g = DITHER_BAYER44[y % 4][x % 4] > 13
- b = DITHER_BAYER44[y % 4][x % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for x in range(80, 160):
- for y in range(80):
- r = DITHER_BAYER44[(y / 8) % 4][(x / 8 - 1) % 4] > 7
- g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
- b = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for y in range(80, 160):
- r = DITHER_BAYER44[y % 4][(x - 1) % 4] > 7
- g = DITHER_BAYER44[y % 4][x % 4] > 13
- b = DITHER_BAYER44[y % 4][x % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for x in range(160, 240):
- for y in range(80):
- r = DITHER_BAYER44[(y / 8 + 1) % 4][(x / 8 + 1) % 4] > 7
- g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
- b = DITHER_BAYER44[(y / 8 + 1) % 4][(x / 8) % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for y in range(80, 160):
- r = DITHER_BAYER44[(y + 1) % 4][(x + 1) % 4] > 7
- g = DITHER_BAYER44[y % 4][x % 4] > 13
- b = DITHER_BAYER44[(y + 1) % 4][x % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for x in range(240, 320):
- for y in range(80):
- r = DITHER_BAYER44[(y / 8 + 1) % 4][(x / 8) % 4] > 7
- g = DITHER_BAYER44[(y / 8) % 4][(x / 8) % 4] > 13
- b = DITHER_BAYER44[(y / 8) % 4][(x / 8 + 2) % 4] > 13
- dest.setRgb(x, y, b, g, r)
- for y in range(80, 160):
- r = DITHER_BAYER44[(y + 1) % 4][x % 4] > 7
- g = DITHER_BAYER44[y % 4][x % 4] > 13
- b = DITHER_BAYER44[y % 4][(x + 2) % 4] > 13
- dest.setRgb(x, y, b, g, r)
- dest.save("out/pat6-2-1.png")
-
- # Pattern 6.2.2: 16-colour palette
- if chapter(6):
- dest = Image((512, 128))
- for x, y in rangexy(64, 64):
- dest.setGray(x, y, 0)
- dest.setGray(448 + x, y, 0.7)
- dest.setGray(x, 64 + y, 0.3)
- dest.setGray(448 + x, 64 + y, 1.)
- for x in range(64, 448):
- d = x / 64
- r = (d & 2) >> 1
- g = (d & 4) >> 2
- b = d & 1
- for y in range(64, 128):
- dest.setRgb(x, y, r, g, b)
- r /= 2.
- g /= 2.
- b /= 2.
- for y in range(64):
- dest.setRgb(x, y, r, g, b)
- dest.save("out/pat6-2-2.png")
-
- # Output 6.2.1: gamma-corrected Floyd-Steinberg with ANSI palette (sigma-abs)
- # Output 6.2.2: gamma-corrected Floyd-Steinberg with ANSI palette (euclidian)
- def test62x(src, mat, cpal, distance, serpentine):
- (w, h) = src.size()
- ipal = [[Gamma.CtoI(c[i]) for i in range(3)] for c in cpal]
- dest = Image((w, h))
- lines = len(mat)
- rows = len(mat[0])
- offset = mat[0].index(-1)
- ey = [[[0.] * 3 for n in range(w + rows - 1)] for n in range(lines)]
- for y in range(h):
- ex = [[0.] * 3 for n in range(rows - offset)]
- if serpentine and y & 1:
- xrange = range(w - 1, -1, -1)
- else:
- xrange = range(w)
- for x in xrange:
- # Get pixel, add error, set pixel
- crgb = src.getRgb(x, y)
- irgb = [Gamma.CtoI(crgb[i]) + ex[0][i] + ey[0][x + offset][i] \
- for i in range(3)]
- crgb = [Gamma.ItoC(irgb[i]) for i in range(3)]
- max = 999999.
- for n in range(len(cpal)):
- d = distance(crgb, cpal[n])
- if d < max:
- max = d
- cbest = cpal[n]
- ibest = ipal[n]
- dest.setRgb(x, y, *cbest)
- # Compute error and propagate it
- for i in range(3):
- # Propagate first line of error
- error = irgb[i] - ibest[i]
- for dx in range(rows - offset - 2):
- ex[dx][i] = ex[dx + 1][i] + error * mat[0][offset + 1 + dx]
- ex[rows - offset - 2][i] = error * mat[0][rows - 1]
- # Propagate next lines
- if serpentine and y & 1:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx][i] += error * mat[dy][rows - 1 - dx]
- else:
- for dy in range(1, lines):
- for dx in range(rows):
- ey[dy][x + dx][i] += error * mat[dy][dx]
- for dy in range(lines - 1):
- ey[dy] = ey[dy + 1]
- ey[lines - 1] = [[0.] * 3 for n in range(w + rows - 1)]
- return dest
-
- RGB_PALETTE = \
- [[0, 0, 0],
- [0, 0, 1],
- [0, 1, 0],
- [0, 1, 1],
- [1, 0, 0],
- [1, 0, 1],
- [1, 1, 0],
- [1, 1, 1]]
-
- ANSI_PALETTE = \
- [[0, 0, 0],
- [0, 0, 0.5],
- [0, 0.5, 0],
- [0, 0.5, 0.5],
- [0.5, 0, 0],
- [0.5, 0, 0.5],
- [0.5, 0.5, 0],
- [0.7, 0.7, 0.7],
- [0.3, 0.3, 0.3],
- [0, 0, 1],
- [0, 1, 0],
- [0, 1, 1],
- [1, 0, 0],
- [1, 0, 1],
- [1, 1, 0],
- [1, 1, 1]]
-
- def distmax(u, v):
- r, g, b = [abs(u[i] - v[i]) for i in range(3)]
- return r + g + b
-
- def disteuclidian(u, v):
- r, g, b = [u[i] - v[i] for i in range(3)]
- return r*r + g*g + b*b
-
- if chapter(6):
- test62x(grad256, ERROR_FSTEIN,
- ANSI_PALETTE, distmax, True).save("out/grad6-2-1.png")
- test62x(lena256, ERROR_FSTEIN,
- ANSI_PALETTE, distmax, True).save("out/lena6-2-1.png")
- test62x(grad256, ERROR_FSTEIN,
- ANSI_PALETTE, disteuclidian, True).save("out/grad6-2-2.png")
- test62x(lena256, ERROR_FSTEIN,
- ANSI_PALETTE, disteuclidian, True).save("out/lena6-2-2.png")
-
- def rgb2hsv(r, g, b):
- m = (float)(min(r, g, b))
- v = (float)(max(r, g, b))
- if v == m or v == 0:
- return 0., 0., v
- s = (v - m) / v
- if r == v:
- h = (g - b) / (v - m)
- if h < 0.:
- h += 6
- elif g == v:
- h = 2. + (b - r) / (v - m)
- elif b == v:
- h = 4. + (r - g) / (v - m)
- return math.pi * h / 3, s, v
-
- def disthsv(u, v):
- u = rgb2hsv(*u)
- v = rgb2hsv(*v)
- d1 = u[2] - v[2]
- d2 = u[2] * u[1] * math.cos(u[0]) - v[2] * v[1] * math.cos(v[0])
- d3 = u[2] * u[1] * math.sin(u[0]) - v[2] * v[1] * math.sin(v[0])
- return d1*d1 + d2*d2 + d3*d3
-
- def disthsv3(u, v):
- u = rgb2hsv(*u)
- v = rgb2hsv(*v)
- d1 = u[2] - v[2]
- d2 = u[2] * u[1] * math.cos(u[0]) - v[2] * v[1] * math.cos(v[0])
- d3 = u[2] * u[1] * math.sin(u[0]) - v[2] * v[1] * math.sin(v[0])
- return 9*d1*d1 + d2*d2 + d3*d3
-
- if chapter(6):
- test62x(grad256, ERROR_FSTEIN,
- ANSI_PALETTE, disthsv, True).save("out/grad6-2-3.png")
- test62x(lena256, ERROR_FSTEIN,
- ANSI_PALETTE, disthsv, True).save("out/lena6-2-3.png")
- test62x(grad256, ERROR_FSTEIN,
- ANSI_PALETTE, disthsv3, True).save("out/grad6-2-4.png")
- test62x(lena256, ERROR_FSTEIN,
- ANSI_PALETTE, disthsv3, True).save("out/lena6-2-4.png")
-
- # Output 6.4.1: colour sub-block error diffusion
- def colorsubblock(src, tiles, propagate, diff):
- (w, h) = src.size()
- # Propagating the error to a temporary buffer is becoming more and
- # more complicated. We decide to use an intermediate matrix instead.
- tmp = Matrix(w, h, None)
- for x, y in rangexy(w, h):
- tmp[y][x] = Gamma.CtoI3(src.getRgb(x, y))
- dest = Image((w, h))
- # Analyse tile list
- ntiles = len(tiles)
- ty = len(tiles[0])
- tx = len(tiles[0][0])
- cur = Matrix(tx, ty, None)
- w, h = w / tx, h / ty
- # Analyse error propagate list
- for x, y in rangexy(w, h):
- # Get block value
- for i, j in rangexy(tx, ty):
- cur[j][i] = Gamma.ItoC3(tmp[y * ty + j][x * tx + i])
- # Select closest block
- dist = tx * ty
- for n in range(ntiles):
- d = [0., 0., 0.]
- e = 0.
- for i, j in rangexy(tx, ty):
- tmpe = 0.
- for k in range(3):
- delta = cur[j][i][k] - tiles[n][j][i][k]
- d[k] += delta
- tmpe += delta * delta
- e += diff[j][i] * math.sqrt(tmpe)
- # Without / 3. ugly colour bleeding artifacts appear
- absd = (abs(d[0]) + abs(d[1]) + abs(d[2])) / 3.
- if absd / (tx * ty) + e < dist:
- dist = absd / (tx * ty) + e
- best = n
- # Set pixel
- for i, j in rangexy(tx, ty):
- dest.setRgb(x * tx + i, y * ty + j, *(tiles[best][j][i]))
- # Propagate error
- for i, j in rangexy(tx, ty):
- curp = Gamma.CtoI3(cur[j][i])
- bestp = Gamma.CtoI3(tiles[best][j][i])
- m = propagate[j][i]
- for k in range(3):
- e = curp[k] - bestp[k]
- for px, py in rangexy(len(m[0]), len(m)):
- if m[py][px] == 0:
- continue
- if m[py][px] == -1:
- cx, cy = px, py
- continue
- tmpx = x * tx + i + px - cx
- tmpy = y * ty + j + py - cy
- if tmpx > w * tx - 1 or tmpy > h * ty - 1:
- continue
- tmp[tmpy][tmpx][k] += m[py][px] * e
- return dest
-
- RGBLINES22 = []
- for n in range(8*8*8*8):
- a, b, c, d = n & 7, (n >> 3) & 7, (n >> 6) & 7, (n >> 9) & 7
- if (a != b or c != d) and (a != c or b != d):
- continue
- RGBLINES22.append([[RGB_PALETTE[a], RGB_PALETTE[b]],
- [RGB_PALETTE[c], RGB_PALETTE[d]]])
-
- if chapter(6):
- colorsubblock(grad256, RGBLINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/grad6-4-1.png")
- colorsubblock(lena256, RGBLINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/lena6-4-1.png")
-
- ANSILINES22 = []
- for n in range(16*16*16*16):
- a, b, c, d = n & 15, (n >> 4) & 15, (n >> 8) & 15, (n >> 12) & 15
- if (a != b or c != d) and (a != c or b != d):
- continue
- ANSILINES22.append([[ANSI_PALETTE[a], ANSI_PALETTE[b]],
- [ANSI_PALETTE[c], ANSI_PALETTE[d]]])
-
- if chapter(6):
- colorsubblock(grad256, ANSILINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/grad6-4-2.png")
- colorsubblock(lena256, ANSILINES22,
- ERROR_SUBFS22, DIFF_WEIGHTED22).save("out/lena6-4-2.png")
-
- ##############################################################################
- if chapter(7):
- print "Chapter 7. Photographic mosaics"
-
- # Output 7.0.1: create a mosaic from Lena
- def mosaic_split(src, tnw, tnh):
- random.seed(0)
- thumbs = []
- (w, h) = src.size()
- sw = w / tnw
- sh = h / tnh
- for x, y in rangexy(sw, sh):
- thumbs.append(src.getRegion(x * tnw, y * tnh, tnw, tnh))
- random.shuffle(thumbs)
- return thumbs
-
- def mosaic_analyse(tnlist, dx, dy):
- coeffs = []
- for (n, img) in enumerate(tnlist):
- tmp = [[[0] * 3 for x in range(dx)] for y in range(dy)]
- (w, h) = img.size()
- for x, y in rangexy(w, h):
- my = y * dy / h
- mx = x * dx / w
- (r, g, b) = img.getRgb(x, y)
- tmp[my][mx][0] += Gamma.CtoI(r) / (w / dx * h / dy)
- tmp[my][mx][1] += Gamma.CtoI(g) / (w / dx * h / dy)
- tmp[my][mx][2] += Gamma.CtoI(b) / (w / dx * h / dy)
- coeffs.append(tmp)
- return coeffs
-
- def test701(tnlist, cols):
- (tnw, tnh) = tnlist[0].size()
- dw = cols
- dh = (len(tnlist) + cols - 1) / cols
- dest = Image((dw * tnw + 8 * (dw + 1), dh * tnh + 8 * (dh + 1)), True)
- for (n, img) in enumerate(tnlist):
- di = 8 + (n % dw) * (tnw + 8)
- dj = 8 + (n / dw) * (tnh + 8)
- img.copyTo(dest, (di, dj))
- return dest
-
- if chapter(7):
- tnlist = mosaic_split(lena256, 32, 32)
- test701(tnlist, 10).save("out/lena7-0-1.png")
-
- # Output 7.1.1: extract 1 colour feature from mosaic tiles
- # Output 7.1.2: crop Lena
- # Output 7.1.3: generate a mosaic from the 1-feature database
- # Output 7.1.4: extract 4 colour features from mosaic tiles
- # Output 7.1.5: generate a mosaic from the 4-feature database
- def test71x(coeffs, cols, tnw, tnh):
- dx = len(coeffs[0][0])
- dy = len(coeffs[0])
- dw = cols
- dh = (len(coeffs) + cols - 1) / cols
- dest = Image((dw * tnw + 8 * (dw + 1), dh * tnh + 8 * (dh + 1)), True)
- for (n, tab) in enumerate(coeffs):
- di = 8 + (n % dw) * (tnw + 8)
- dj = 8 + (n / dw) * (tnh + 8)
- for x, y in rangexy(tnw, tnh):
- (r, g, b) = tab[y * dy / tnh][x * dx / tnw]
- dest.setRgb(di + x, dj + y, Gamma.ItoC(r), Gamma.ItoC(g), Gamma.ItoC(b))
- return dest
-
- def test71y(src, sqw, sqh, tnlist, coeffs):
- (w, h) = src.size()
- (tnw, tnh) = tnlist[0].size()
- dx = len(coeffs[0][0])
- dy = len(coeffs[0])
- nx = w / sqw
- ny = h / sqh
- dest = Image((nx * tnw, ny * tnh), True)
- for X, Y in rangexy(nx, ny):
- # 1. create statistics about the current square
- cur = [[[0] * 3 for x in range(dx)] for y in range(dy)]
- for x, y in rangexy(sqw, sqh):
- my = y * dy / sqh
- mx = x * dx / sqw
- (r, g, b) = src.getRgb(X * sqw + x, Y * sqh + y)
- cur[my][mx][0] += Gamma.CtoI(r) / (sqw / dx * sqh / dy)
- cur[my][mx][1] += Gamma.CtoI(g) / (sqw / dx * sqh / dy)
- cur[my][mx][2] += Gamma.CtoI(b) / (sqw / dx * sqh / dy)
- # 2. find the best mosaic part
- best = -1
- dist = 5.
- for (n, tmp) in enumerate(coeffs):
- d = 0
- for i, j in rangexy(dx, dy):
- for c in range(3):
- t = cur[j][i][c] - tmp[j][i][c]
- d += t * t
- if d < dist:
- dist = d
- best = n
- # 3. blit mosaic chunk
- tnlist[best].copyTo(dest, (X * tnw, Y * tnh))
- return dest
-
- if chapter(7):
- coeffs1x1 = mosaic_analyse(tnlist, 1, 1)
- test71x(coeffs1x1, 10, 8, 8).save("out/lena7-1-1.png")
- out712 = lena256.getRegion(100, 90, 80, 80)
- out712.save("out/lena7-1-2.png")
- test71y(out712, 6, 6, tnlist, coeffs1x1).save("out/lena7-1-3.png")
-
- coeffs2x2 = mosaic_analyse(tnlist, 2, 2)
- test71x(coeffs2x2, 10, 16, 16).save("out/lena7-1-4.png")
- test71y(out712, 6, 6, tnlist, coeffs2x2).save("out/lena7-1-5.png")
-
- ##############################################################################
- print "Finished"
-
- # Place temporary cruft below this
- sys.exit(0)
-
- def simusubblock(src):
- (w, h) = src.size()
- dest = Image((w, h))
- tmp = Matrix(w, h, 0.)
- for x, y in rangexy(w, h):
- tmp[y][x] = src.getRgb(x, y)
- dest = Image((w, h))
- # Analyse tile list
- ntiles = len(tiles)
- ty = len(tiles[0])
- tx = len(tiles[0][0])
- cur = Matrix(tx, ty, None)
- w, h = w / tx, h / ty
- # Analyse error propagate list
- for x, y in rangexy(w, h):
- # Get block value
- for i, j in rangexy(tx, ty):
- cur[j][i] = Gamma.ItoC3(tmp[y * ty + j][x * tx + i])
- # Select closest block
- dist = tx * ty
- for n in range(ntiles):
- d = [0., 0., 0.]
- e = 0.
- for i, j in rangexy(tx, ty):
- tmpe = 0.
- for k in range(3):
- delta = cur[j][i][k] - tiles[n][j][i][k]
- d[k] += delta
- tmpe += delta * delta
- e += diff[j][i] * math.sqrt(tmpe)
- # Without / 3. ugly colour bleeding artifacts appear
- absd = (abs(d[0]) + abs(d[1]) + abs(d[2])) / 3.
- if absd / (tx * ty) + e < dist:
- dist = absd / (tx * ty) + e
- best = n
- # Set pixel
- for i, j in rangexy(tx, ty):
- dest.setRgb(x * tx + i, y * ty + j, *(tiles[best][j][i]))
- # Propagate error
- for i, j in rangexy(tx, ty):
- curp = Gamma.CtoI3(cur[j][i])
- bestp = Gamma.CtoI3(tiles[best][j][i])
- m = propagate[j][i]
- for k in range(3):
- e = curp[k] - bestp[k]
- for px, py in rangexy(len(m[0]), len(m)):
- if m[py][px] == 0:
- continue
- if m[py][px] == -1:
- cx, cy = px, py
- continue
- tmpx = x * tx + i + px - cx
- tmpy = y * ty + j + py - cy
- if tmpx > w * tx - 1 or tmpy > h * ty - 1:
- continue
- tmp[tmpy][tmpx][k] += m[py][px] * e
- return dest
-
-
- # XXX: test -- ranked dither -- it SUCKS
- def test26x(src, mat):
- (w, h) = src.size()
- dest = Image((w, h))
- dx = len(mat[0])
- dy = len(mat)
- for x, y in rangexy(w / dx, h / dy):
- # Step 1: get the pixels and count groups
- groups = {}
- for i, j in rangexy(dx, dy):
- p = src.getGray(x * dx + i, y * dy + j)
- if groups.has_key(p):
- groups[p].append((i, j))
- else:
- groups[p] = [(i, j)]
- # Step 2: create the ranked dither
- ranked = Matrix(dx, dy)
- for p, g in groups.items():
- n = (int)(round(p * len(g)))
- if not n:
- continue
- v = [(mat[j][i], (i, j)) for (i, j) in g]
- v.sort()
- v = v[0 : n - 1]
- for (k, (i, j)) in v:
- ranked[j][i] = 1
- # Step 3: blit the ranked dither
- for j in range(dy):
- for i in range(dx):
- dest.setGray(x * dx + i, y * dy + j, ranked[j][i])
- return dest
-
- if chapter(2):
- #test26x(lena256bw, DITHER_BAYER88).save("out/lena2-6-1.png")
- #test26x(grad256bw, DITHER_BAYER88).save("out/grad2-6-1.png")
- test26x(lena256bw, DITHER_CLUSTER88).save("out/lena2-6-1.png")
- test26x(grad256bw, DITHER_CLUSTER88).save("out/grad2-6-1.png")
-
- #####################
- #CIE-L*a*b* transformation -- euclidian distance doesn't seem to work great
- def rgb2lab(r, g, b):
- Xw50 = 0.9642;
- Yw50 = 1.0000;
- Zw50 = 0.8249;
- # RGB to sRGB
- r = Gamma.CtoI(r)
- g = Gamma.CtoI(g)
- b = Gamma.CtoI(b)
- # sRGB to XYZ(D65)
- x65 = 0.4124*r + 0.3576*g + 0.1805*b
- y65 = 0.2126*r + 0.7152*g + 0.0722*b
- z65 = 0.0193*r + 0.1192*g + 0.9505*b
- # XYZ(D65) to XYZ(D50)
- x50 = 1.0282015*x65 + 0.0500707*y65 - 0.0579688*z65
- y50 = 0.0197032*x65 + 0.9871848*y65 - 0.0054285*z65
- z50 = -0.0002329*x65 + 0.0006862*y65 + 0.7573070*z65
- # XYZ(D50) to Lab(D50)
- if x50 / Xw50 > 0.008856:
- xx50 = math.pow(x50 / Xw50, 1. / 3.)
- else:
- xx50 = 7.78 * (x50 / Xw50) + 16. / 116.
- if y50 / Yw50 > 0.008856:
- yy50 = math.pow(y50 / Yw50, 1. / 3.)
- else:
- yy50 = 7.78 * (y50 / Yw50) + 16. / 116.
- if z50 / Zw50 > 0.008856:
- zz50 = math.pow(z50 / Zw50, 1. / 3.)
- else:
- zz50 = 7.78 * (z50 / Zw50) + 16. / 116.
- lo = 116. * yy50 - 16.
- ao = 500. * (xx50 - yy50)
- bo = 200. * (yy50 - zz50)
- return lo, ao, bo
-
- def distlab(u, v):
- u = rgb2lab(*u)
- v = rgb2lab(*v)
- l, a, b = u[0] - v[0], u[1] - v[1], u[2] - v[2]
- return l*l + a*a + b*b
-
|