|
- /*
- ---------------------------------------------------------------------------
- Open Asset Import Library (assimp)
- ---------------------------------------------------------------------------
-
- Copyright (c) 2006-2012, assimp team
-
- All rights reserved.
-
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the following
- conditions are met:
-
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
-
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
-
- * Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ---------------------------------------------------------------------------
- */
-
- /** @file aiQuaterniont.inl
- * @brief Inline implementation of aiQuaterniont<TReal> operators
- */
- #ifndef AI_QUATERNION_INL_INC
- #define AI_QUATERNION_INL_INC
-
- #ifdef __cplusplus
- #include "quaternion.h"
-
- #include <cmath>
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const
- {
- return x == o.x && y == o.y && z == o.z && w == o.w;
- }
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const
- {
- return !(*this == o);
- }
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- inline bool aiQuaterniont<TReal>::Equal(const aiQuaterniont& o, TReal epsilon) const {
- return
- std::abs(x - o.x) <= epsilon &&
- std::abs(y - o.y) <= epsilon &&
- std::abs(z - o.z) <= epsilon &&
- std::abs(w - o.w) <= epsilon;
- }
-
- // ---------------------------------------------------------------------------
- // Constructs a quaternion from a rotation matrix
- template<typename TReal>
- inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
- {
- TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
-
- // large enough
- if( t > static_cast<TReal>(0))
- {
- TReal s = sqrt(1 + t) * static_cast<TReal>(2.0);
- x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
- y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
- z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
- w = static_cast<TReal>(0.25) * s;
- } // else we have to check several cases
- else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
- {
- // Column 0:
- TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0);
- x = static_cast<TReal>(0.25) * s;
- y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
- z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
- w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
- }
- else if( pRotMatrix.b2 > pRotMatrix.c3)
- {
- // Column 1:
- TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0);
- x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
- y = static_cast<TReal>(0.25) * s;
- z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
- w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
- } else
- {
- // Column 2:
- TReal s = sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0);
- x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
- y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
- z = static_cast<TReal>(0.25) * s;
- w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
- }
- }
-
- // ---------------------------------------------------------------------------
- // Construction from euler angles
- template<typename TReal>
- inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll )
- {
- const TReal fSinPitch(sin(fPitch*static_cast<TReal>(0.5)));
- const TReal fCosPitch(cos(fPitch*static_cast<TReal>(0.5)));
- const TReal fSinYaw(sin(fYaw*static_cast<TReal>(0.5)));
- const TReal fCosYaw(cos(fYaw*static_cast<TReal>(0.5)));
- const TReal fSinRoll(sin(fRoll*static_cast<TReal>(0.5)));
- const TReal fCosRoll(cos(fRoll*static_cast<TReal>(0.5)));
- const TReal fCosPitchCosYaw(fCosPitch*fCosYaw);
- const TReal fSinPitchSinYaw(fSinPitch*fSinYaw);
- x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
- y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
- z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
- w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
- }
-
- // ---------------------------------------------------------------------------
- // Returns a matrix representation of the quaternion
- template<typename TReal>
- inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const
- {
- aiMatrix3x3t<TReal> resMatrix;
- resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z);
- resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w);
- resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w);
- resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w);
- resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z);
- resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w);
- resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w);
- resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w);
- resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y);
-
- return resMatrix;
- }
-
- // ---------------------------------------------------------------------------
- // Construction from an axis-angle pair
- template<typename TReal>
- inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle)
- {
- axis.Normalize();
-
- const TReal sin_a = sin( angle / 2 );
- const TReal cos_a = cos( angle / 2 );
- x = axis.x * sin_a;
- y = axis.y * sin_a;
- z = axis.z * sin_a;
- w = cos_a;
- }
- // ---------------------------------------------------------------------------
- // Construction from am existing, normalized quaternion
- template<typename TReal>
- inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized)
- {
- x = normalized.x;
- y = normalized.y;
- z = normalized.z;
-
- const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z);
-
- if (t < static_cast<TReal>(0.0)) {
- w = static_cast<TReal>(0.0);
- }
- else w = sqrt (t);
- }
-
- // ---------------------------------------------------------------------------
- // Performs a spherical interpolation between two quaternions
- // Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
- // Congrats, gmtl!
- template<typename TReal>
- inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor)
- {
- // calc cosine theta
- TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
-
- // adjust signs (if necessary)
- aiQuaterniont end = pEnd;
- if( cosom < static_cast<TReal>(0.0))
- {
- cosom = -cosom;
- end.x = -end.x; // Reverse all signs
- end.y = -end.y;
- end.z = -end.z;
- end.w = -end.w;
- }
-
- // Calculate coefficients
- TReal sclp, sclq;
- if( (static_cast<TReal>(1.0) - cosom) > static_cast<TReal>(0.0001)) // 0.0001 -> some epsillon
- {
- // Standard case (slerp)
- TReal omega, sinom;
- omega = acos( cosom); // extract theta from dot product's cos theta
- sinom = sin( omega);
- sclp = sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom;
- sclq = sin( pFactor * omega) / sinom;
- } else
- {
- // Very close, do linear interp (because it's faster)
- sclp = static_cast<TReal>(1.0) - pFactor;
- sclq = pFactor;
- }
-
- pOut.x = sclp * pStart.x + sclq * end.x;
- pOut.y = sclp * pStart.y + sclq * end.y;
- pOut.z = sclp * pStart.z + sclq * end.z;
- pOut.w = sclp * pStart.w + sclq * end.w;
- }
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize()
- {
- // compute the magnitude and divide through it
- const TReal mag = sqrt(x*x + y*y + z*z + w*w);
- if (mag)
- {
- const TReal invMag = static_cast<TReal>(1.0)/mag;
- x *= invMag;
- y *= invMag;
- z *= invMag;
- w *= invMag;
- }
- return *this;
- }
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const
- {
- return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z,
- w*t.x + x*t.w + y*t.z - z*t.y,
- w*t.y + y*t.w + z*t.x - x*t.z,
- w*t.z + z*t.w + x*t.y - y*t.x);
- }
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate ()
- {
- x = -x;
- y = -y;
- z = -z;
- return *this;
- }
-
- // ---------------------------------------------------------------------------
- template<typename TReal>
- inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v)
- {
- aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
- q.Conjugate();
-
- q = q*q2*qinv;
- return aiVector3t<TReal>(q.x,q.y,q.z);
-
- }
-
- #endif
- #endif
|