|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- //
- // Lol Engine
- //
- // Copyright © 2010—2015 Sam Hocevar <sam@hocevar.net>
- //
- // Lol Engine is free software. It comes without any warranty, to
- // the extent permitted by applicable law. You can redistribute it
- // and/or modify it under the terms of the Do What the Fuck You Want
- // to Public License, Version 2, as published by the WTFPL Task Force.
- // See http://www.wtfpl.net/ for more details.
- //
-
- #include <lol/engine-internal.h>
-
- namespace lol
- {
-
- template<> quat quat::rotate(float radians, vec3 const &v)
- {
- float half_angle = radians * 0.5f;
-
- vec3 tmp = normalize(v) * sin(half_angle);
-
- return quat(cos(half_angle), tmp.x, tmp.y, tmp.z);
- }
-
- template<> quat quat::rotate(float radians, float x, float y, float z)
- {
- return quat::rotate(radians, vec3(x, y, z));
- }
-
- template<> quat quat::rotate(vec3 const &src, vec3 const &dst)
- {
- /* Algorithm directly taken from Sam Hocevar's article "Quaternion from
- * two vectors: the final version".
- * http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final */
- float magnitude = lol::sqrt(sqlength(src) * sqlength(dst));
- float real_part = magnitude + dot(src, dst);
- vec3 w;
-
- if (real_part < 1.e-6f * magnitude)
- {
- /* If src and dst are exactly opposite, rotate 180 degrees
- * around an arbitrary orthogonal axis. Axis normalisation
- * can happen later, when we normalise the quaternion. */
- real_part = 0.0f;
- w = abs(src.x) > abs(src.z) ? vec3(-src.y, src.x, 0.f)
- : vec3(0.f, -src.z, src.y);
- }
- else
- {
- /* Otherwise, build quaternion the standard way. */
- w = cross(src, dst);
- }
-
- return normalize(quat(real_part, w.x, w.y, w.z));
- }
-
- template<> quat slerp(quat const &qa, quat const &qb, float f)
- {
- float const magnitude = lol::sqrt(sqlength(qa) * sqlength(qb));
- float const product = lol::dot(qa, qb) / magnitude;
-
- /* If quaternions are equal or opposite, there is no need
- * to slerp anything, just return qa. */
- if (std::abs(product) >= 1.0f)
- return qa;
-
- float const sign = (product < 0.0f) ? -1.0f : 1.0f;
- float const theta = lol::acos(sign * product);
- float const s1 = lol::sin(sign * f * theta);
- float const s0 = lol::sin((1.0f - f) * theta);
-
- /* This is the same as 1/sin(theta) */
- float const d = 1.0f / lol::sqrt(1.f - product * product);
-
- return qa * (s0 * d) + qb * (s1 * d);
- }
-
- static inline vec3 quat_toeuler_generic(quat const &q, int i, int j, int k)
- {
- float n = norm(q);
-
- if (!n)
- return vec3::zero;
-
- /* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
- float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;
-
- vec3 ret;
-
- /* k == i means X-Y-X style Euler angles; otherwise we’re
- * actually handling X-Y-Z style Tait-Bryan angles. */
- if (k == i)
- {
- k = 3 - i - j;
-
- ret[0] = atan2(q[1 + i] * q[1 + j] + sign * (q.w * q[1 + k]),
- q.w * q[1 + j] - sign * (q[1 + i] * q[1 + k]));
- ret[1] = acos(2.f * (sq(q.w) + sq(q[1 + i])) - 1.f);
- ret[2] = atan2(q[1 + i] * q[1 + j] - sign * (q.w * q[1 + k]),
- q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k]));
- }
- else
- {
- ret[0] = atan2(2.f * (q.w * q[1 + i] - sign * (q[1 + j] * q[1 + k])),
- 1.f - 2.f * (sq(q[1 + i]) + sq(q[1 + j])));
- ret[1] = asin(2.f * (q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k])));
- ret[2] = atan2(2.f * (q.w * q[1 + k] - sign * (q[1 + j] * q[1 + i])),
- 1.f - 2.f * (sq(q[1 + k]) + sq(q[1 + j])));
- }
-
- return ret / n;
- }
-
- static inline mat3 mat3_fromeuler_generic(vec3 const &v, int i, int j, int k)
- {
- mat3 ret;
-
- float const s0 = sin(v[0]), c0 = cos(v[0]);
- float const s1 = sin(v[1]), c1 = cos(v[1]);
- float const s2 = sin(v[2]), c2 = cos(v[2]);
-
- /* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
- float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;
-
- /* k == i means X-Y-X style Euler angles; otherwise we’re
- * actually handling X-Y-Z style Tait-Bryan angles. */
- if (k == i)
- {
- k = 3 - i - j;
-
- ret[i][i] = c1;
- ret[i][j] = s0 * s1;
- ret[i][k] = - sign * (c0 * s1);
-
- ret[j][i] = s1 * s2;
- ret[j][j] = c0 * c2 - s0 * c1 * s2;
- ret[j][k] = sign * (s0 * c2 + c0 * c1 * s2);
-
- ret[k][i] = sign * (s1 * c2);
- ret[k][j] = - sign * (c0 * s2 + s0 * c1 * c2);
- ret[k][k] = - s0 * s2 + c0 * c1 * c2;
- }
- else
- {
- ret[i][i] = c1 * c2;
- ret[i][j] = sign * (c0 * s2) + s0 * s1 * c2;
- ret[i][k] = s0 * s2 - sign * (c0 * s1 * c2);
-
- ret[j][i] = - sign * (c1 * s2);
- ret[j][j] = c0 * c2 - sign * (s0 * s1 * s2);
- ret[j][k] = sign * (s0 * c2) + c0 * s1 * s2;
-
- ret[k][i] = sign * s1;
- ret[k][j] = - sign * (s0 * c1);
- ret[k][k] = c0 * c1;
- }
-
- return ret;
- }
-
- static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k)
- {
- vec3 const half_angles = v * 0.5f;
- float const s0 = sin(half_angles[0]), c0 = cos(half_angles[0]);
- float const s1 = sin(half_angles[1]), c1 = cos(half_angles[1]);
- float const s2 = sin(half_angles[2]), c2 = cos(half_angles[2]);
-
- quat ret;
-
- /* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
- float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;
-
- /* k == i means X-Y-X style Euler angles; otherwise we’re
- * actually handling X-Y-Z style Tait-Bryan angles. */
- if (k == i)
- {
- k = 3 - i - j;
-
- ret[0] = c1 * (c0 * c2 - s0 * s2);
- ret[1 + i] = c1 * (c0 * s2 + s0 * c2);
- ret[1 + j] = s1 * (c0 * c2 + s0 * s2);
- ret[1 + k] = sign * (s1 * (s0 * c2 - c0 * s2));
- }
- else
- {
- ret[0] = c0 * c1 * c2 - sign * (s0 * s1 * s2);
- ret[1 + i] = s0 * c1 * c2 + sign * (c0 * s1 * s2);
- ret[1 + j] = c0 * s1 * c2 - sign * (s0 * c1 * s2);
- ret[1 + k] = c0 * c1 * s2 + sign * (s0 * s1 * c2);
- }
-
- return ret;
- }
-
- #define DEFINE_GENERIC_EULER_CONVERSIONS(a1, a2, a3) \
- DEFINE_GENERIC_EULER_CONVERSIONS_INNER(a1, a2, a3, a1##a2##a3) \
-
- #define DEFINE_GENERIC_EULER_CONVERSIONS_INNER(a1, a2, a3, name) \
- /* Create quaternions from Euler angles */ \
- template<> quat quat::fromeuler_##name(vec3 const &v) \
- { \
- int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
- return quat_fromeuler_generic(v, a1, a2, a3); \
- } \
- \
- template<> quat quat::fromeuler_##name(float phi, float theta, float psi) \
- { \
- return quat::fromeuler_##name(vec3(phi, theta, psi)); \
- } \
- \
- /* Create 3×3 matrices from Euler angles */ \
- template<> mat3 mat3::fromeuler_##name(vec3 const &v) \
- { \
- int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
- return mat3_fromeuler_generic(v, a1, a2, a3); \
- } \
- \
- template<> mat3 mat3::fromeuler_##name(float phi, float theta, float psi) \
- { \
- return mat3::fromeuler_##name(vec3(phi, theta, psi)); \
- } \
- \
- /* Create 4×4 matrices from Euler angles */ \
- template<> mat4 mat4::fromeuler_##name(vec3 const &v) \
- { \
- int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
- return mat4(mat3_fromeuler_generic(v, a1, a2, a3), 1.f); \
- } \
- \
- template<> mat4 mat4::fromeuler_##name(float phi, float theta, float psi) \
- { \
- return mat4::fromeuler_##name(vec3(phi, theta, psi)); \
- } \
- \
- /* Retrieve Euler angles from a quaternion */ \
- template<> vec3 vec3::toeuler_##name(quat const &q) \
- { \
- int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
- return quat_toeuler_generic(q, a1, a2, a3); \
- }
-
- DEFINE_GENERIC_EULER_CONVERSIONS(x, y, x)
- DEFINE_GENERIC_EULER_CONVERSIONS(x, z, x)
- DEFINE_GENERIC_EULER_CONVERSIONS(y, x, y)
- DEFINE_GENERIC_EULER_CONVERSIONS(y, z, y)
- DEFINE_GENERIC_EULER_CONVERSIONS(z, x, z)
- DEFINE_GENERIC_EULER_CONVERSIONS(z, y, z)
-
- DEFINE_GENERIC_EULER_CONVERSIONS(x, y, z)
- DEFINE_GENERIC_EULER_CONVERSIONS(x, z, y)
- DEFINE_GENERIC_EULER_CONVERSIONS(y, x, z)
- DEFINE_GENERIC_EULER_CONVERSIONS(y, z, x)
- DEFINE_GENERIC_EULER_CONVERSIONS(z, x, y)
- DEFINE_GENERIC_EULER_CONVERSIONS(z, y, x)
-
- #undef DEFINE_GENERIC_EULER_CONVERSIONS
- #undef DEFINE_GENERIC_EULER_CONVERSIONS_INNER
-
- } /* namespace lol */
-
|