|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- //
- // Lol Engine
- //
- // Copyright © 2010—2020 Sam Hocevar <sam@hocevar.net>
- // © 2010—2013 Benjamin “Touky” Huet <huet.benjamin@gmail.com>
- //
- // Lol Engine is free software. It comes without any warranty, to
- // the extent permitted by applicable law. You can redistribute it
- // and/or modify it under the terms of the Do What the Fuck You Want
- // to Public License, Version 2, as published by the WTFPL Task Force.
- // See http://www.wtfpl.net/ for more details.
- //
-
- #include <lol/engine-internal.h>
-
- #include <cstdlib> /* free() */
- #include <cstring> /* strdup() */
-
- #include <ostream> /* std::ostream */
-
- namespace lol
- {
- //Test epsilon stuff
- TestEpsilon g_test_epsilon;
- float TestEpsilon::Get() { return g_test_epsilon.m_epsilon; }
- void TestEpsilon::Set(float epsilon) { g_test_epsilon.m_epsilon = lol::max(epsilon, .0f); }
- const TestEpsilon& TestEpsilon::F(float value) { g_test_epsilon.m_value = value; return g_test_epsilon; }
- float TestEpsilon::Minus()const { return m_value - m_epsilon; }
- float TestEpsilon::Plus() const { return m_value + m_epsilon; }
- bool TestEpsilon::operator==(float value)const { return (Minus() <= value && value <= Plus()); }
- bool TestEpsilon::operator!=(float value)const { return (value < Minus() || Plus() < value); }
- bool TestEpsilon::operator<(float value) const { return (Plus() < value); }
- bool TestEpsilon::operator<=(float value)const { return (Minus() <= value); }
- bool TestEpsilon::operator>(float value) const { return (Minus() > value); }
- bool TestEpsilon::operator>=(float value)const { return (Plus() >= value); }
- bool operator==(float value, const TestEpsilon& epsilon) { return epsilon == value; }
- bool operator!=(float value, const TestEpsilon& epsilon) { return epsilon != value; }
- bool operator<(float value, const TestEpsilon& epsilon) { return epsilon > value; }
- bool operator<=(float value, const TestEpsilon& epsilon) { return epsilon >= value; }
- bool operator>(float value, const TestEpsilon& epsilon) { return epsilon < value; }
- bool operator>=(float value, const TestEpsilon& epsilon) { return epsilon <= value; }
-
- // Line/triangle : sets isec_p as the intersection point & return true if ok.
- bool TestRayVsTriangle(vec3 const &ray_point, vec3 const &ray_dir,
- vec3 const &tri_p0, vec3 const &tri_p1, vec3 const &tri_p2,
- vec3 &isec_p)
- {
- vec3 v01, v02, h, v0P, q;
- float a, f, triU, triV;
-
- //
- v01 = tri_p1 - tri_p0;
- v02 = tri_p2 - tri_p0;
-
- h = cross(ray_dir, v02);
- a = dot(v01, h);
-
- //rayDir is coplanar to the triangle, exit.
- if (a > -TestEpsilon::Get() && a < TestEpsilon::Get())
- return false;
-
- f = 1 / a;
- v0P = ray_point - tri_p0;
- triU = f * (dot(v0P, h));
-
- //point is supposed to have an U on the segment v01
- if (triU < -TestEpsilon::Get() || triU > 1.0)
- return false;
-
- q = cross(v0P, v01);
- triV = f * dot(ray_dir, q);
-
- //point is not in the triangle
- if (triV < -TestEpsilon::Get() || triU + triV > 1.0)
- return false;
-
- // at this stage we can compute t to find out where
- // the intersection point is on the line
- float t = f * dot(v02, q);
-
- if (t > TestEpsilon::Get()) // ray intersection
- {
- isec_p = tri_p0 + v01 * triU + v02 * triV;
- return true;
- }
- else // this means that there is a line intersection
- // but not a ray intersection
- return false;
- }
-
- // Triangle/Triangle
- bool TestTriangleVsTriangle(vec3 const &v00, vec3 const &v01, vec3 const &v02, //triangle 0
- vec3 const &v10, vec3 const &v11, vec3 const &v12, //triangle 1
- vec3 &ip00, vec3 &ip10) //triangle intersection, iPx means gives the actual intersection points.
- {
- vec3 isec[2] = { vec3(0, 0, 0), vec3(0, 0, 0) };
- vec3 triV[6] = { v00, v01, v02,
- v10, v11, v12 };
- vec3 triD[6] = { v01 - v00, v02 - v01, v00 - v02,
- v11 - v10, v12 - v11, v10 - v12 };
- int isecIdx = 0;
- vec3 isec_p(0);
-
- //Check the normal before doing any other calculations
- vec3 plane_norm[2] = { cross(normalize(triD[0]), normalize(triD[1])),
- cross(normalize(triD[3]), normalize(triD[4])) };
- if (abs(dot(plane_norm[0], plane_norm[1])) == 1.0f)
- return false;
-
- #if 0
- //Precheck to verify if two point of one of the tri-A are on tri-B, and vice versa.
- int zero_dist[2] = { 0, 0 };
- for (int i = 0; i < 3; i++)
- {
- if (PointDistToPlane(triV[i], triV[3], plane_norm[1]) < TestEpsilon::Get())
- zero_dist[0]++;
- if (PointDistToPlane(triV[i + 3], triV[0], plane_norm[0]) < TestEpsilon::Get())
- zero_dist[1]++;
- }
-
- if (zero_dist[0] >= 2 || zero_dist[0] >= 2)
- return false;
- #endif
-
- //We first need to find two points intersecting, no matter on which triangle.
- for (int i = 0; i < 2 && isecIdx < 2; i++)
- {
- /*int found_isec = -1;*/
- for (int j = 0; j < 3 && isecIdx < 2; j++)
- {
- int pIdx = j + i * 3;
- int tIdx = (1 - i) * 3;
- if (TestRayVsTriangle(triV[pIdx], triD[pIdx],
- triV[tIdx + 0], triV[tIdx + 1], triV[tIdx + 2],
- isec[isecIdx]))
- {
- #if 1 //if the point is near one the given entry, consider it as being the same point.
- for (int k = 0; k < 6; k++)
- {
- if (length(isec[isecIdx] - triV[k]) < TestEpsilon::Get())
- {
- isec[isecIdx] = triV[k];
- break;
- }
- }
- #endif
-
- //Automatic pass on the first intersection
- if (isecIdx == 0 ||
- //If we have already found an intersection, pass if it's on this triangle.
- /*found_isec == i ||*/
- //if it's the second intersection, we need it to be different from the first one.
- (isecIdx == 1 && length(isec[0] - isec[1]) > TestEpsilon::Get()))
- {
- /*found_isec = i;*/
- isecIdx++;
- }
- }
- }
- }
-
- if (isecIdx >= 2)
- {
- ip00 = isec[0];
- ip10 = isec[1];
- return true;
- }
- return false;
- }
-
- //Ray/Line : returns one of the RAY_ISECT_* defines.
- int TestRayVsRay(vec3 const &ray_p00, vec3 const &ray_p01,
- vec3 const &ray_p10, vec3 const &ray_p11,
- vec3 &isec_p)
- {
- vec3 rayD0 = ray_p01 - ray_p00;
- vec3 rayD0N = normalize(rayD0);
-
- vec3 rayD1 = ray_p11 - ray_p10;
- vec3 rayD1N = normalize(rayD1);
-
- vec3 rayP0P1 = ray_p10 - ray_p00;
- vec3 c01 = cross(rayD0N, rayD1N);
- float crs01S = length(c01);
-
- if (crs01S > -TestEpsilon::Get() && crs01S < TestEpsilon::Get())
- return 0;
-
- mat3 m0 = mat3(rayP0P1, rayD1N, c01);
- float t0 = determinant(m0) / (crs01S * crs01S);
- vec3 isec0 = ray_p00 + rayD0N * t0;
-
- mat3 m1 = mat3(rayP0P1, rayD0N, c01);
- float t1 = determinant(m1) / (crs01S * crs01S);
- vec3 isec1 = ray_p10 + rayD1N * t1;
-
- if (sqlength(isec0 - isec1) < TestEpsilon::Get()) //ray intersection
- {
- isec_p = (isec0 + isec0) * .5f;
- float d0 = (length(ray_p01 - isec_p) < TestEpsilon::Get() || length(ray_p00 - isec_p) < TestEpsilon::Get())?
- (-1.0f):
- (dot(ray_p00 - isec_p, ray_p01 - isec_p));
- float d1 = (length(ray_p10 - isec_p) < TestEpsilon::Get() || length(ray_p11 - isec_p) < TestEpsilon::Get())?
- (-1.0f):
- (dot(ray_p10 - isec_p, ray_p11 - isec_p));
-
- //if the dot is negative, your point is in each ray, so say OK.
- if (d0 < .0f && d1 < .0f)
- return RAY_ISECT_ALL;
- if (d0 < .0f)
- return RAY_ISECT_P0;
- if (d1 < .0f)
- return RAY_ISECT_P1;
- return RAY_ISECT_NONE;
- }
- else // this means that there is a line intersection
- // but not a ray intersection
- return RAY_ISECT_NOTHING;
- }
-
- //used to find the intersecting points between a triangle side and a coplanar line.
- bool TestRayVsTriangleSide(vec3 const &v0, vec3 const &v1, vec3 const &v2,
- vec3 const &ip0, vec3 const &ip1,
- vec3 &iV0, int &iIdx0, vec3 &iV1, int &iIdx1)
- {
- vec3 isecV[2] = { vec3(.0f), vec3(.0f) };
- int isecI[2] = { -1, -1 };
-
- vec3 triV[3] = { v0, v1, v2 };
- int isecIdx = 0;
- vec3 isec_p(0);
-
- //Two points given, so we test each triangle side to find the intersect
- isecIdx = 0;
- for (int j = 0; j < 3 && isecIdx < 2; j++)
- {
- int Result = TestRayVsRay(triV[j], triV[(j + 1) % 3], ip0, ip1, isec_p);
- if (Result == RAY_ISECT_P0 || Result == RAY_ISECT_ALL)
- {
- isecV[isecIdx] = isec_p;
- isecI[isecIdx] = j;
- isecIdx++;
- }
- }
-
- if (isecIdx < 2)
- return false;
-
- //We send the infos back to the parent.
- //TODO : that can be better than this horrible thing.
- iV0 = isecV[0];
- iV1 = isecV[1];
- iIdx0 = isecI[0];
- iIdx1 = isecI[1];
- return true;
- }
-
- //--
- bool TestPointVsFrustum(const vec3& point, const mat4& frustum, vec3* result_point)
- {
- vec4 proj_point = frustum * vec4(point, 1.f);
- proj_point /= proj_point.w;
-
- if (result_point)
- *result_point = proj_point.xyz;
- for (int i = 0; i < 3; i++)
- if (lol::abs(proj_point[i]) > 1.f)
- return false;
- return true;
- }
- } /* namespace lol */
-
|