You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 10 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 10 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 10 години
преди 11 години
преди 11 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. //
  2. // LolRemez - Remez algorithm implementation
  3. //
  4. // Copyright: (c) 2005-2013 Sam Hocevar <sam@hocevar.net>
  5. // This program is free software; you can redistribute it and/or
  6. // modify it under the terms of the Do What The Fuck You Want To
  7. // Public License, Version 2, as published by Sam Hocevar. See
  8. // http://www.wtfpl.net/ for more details.
  9. //
  10. #if HAVE_CONFIG_H
  11. # include "config.h"
  12. #endif
  13. #include <lol/engine.h>
  14. #include <lol/math/real.h>
  15. #include "matrix.h"
  16. #include "solver.h"
  17. using lol::real;
  18. RemezSolver::RemezSolver(int order, int decimals)
  19. : m_order(order),
  20. m_decimals(decimals)
  21. {
  22. }
  23. void RemezSolver::Run(real a, real b,
  24. RemezSolver::RealFunc *func,
  25. RemezSolver::RealFunc *weight)
  26. {
  27. using std::printf;
  28. m_func = func;
  29. m_weight = weight;
  30. m_k1 = (b + a) / 2;
  31. m_k2 = (b - a) / 2;
  32. m_invk2 = re(m_k2);
  33. m_invk1 = -m_k1 * m_invk2;
  34. m_epsilon = pow((real)10, (real)-(m_decimals + 2));
  35. Init();
  36. PrintPoly();
  37. real error = -1;
  38. for (int n = 0; ; n++)
  39. {
  40. real newerror = FindExtrema();
  41. printf("Step %i error: ", n);
  42. newerror.print(m_decimals);
  43. printf("\n");
  44. Step();
  45. if (error >= (real)0 && fabs(newerror - error) < error * m_epsilon)
  46. break;
  47. error = newerror;
  48. PrintPoly();
  49. FindZeroes();
  50. }
  51. PrintPoly();
  52. }
  53. real RemezSolver::EvalCheby(real const &x)
  54. {
  55. real ret = 0.0, xn = 1.0;
  56. for (int i = 0; i < m_order + 1; i++)
  57. {
  58. real mul = 0;
  59. for (int j = 0; j < m_order + 1; j++)
  60. mul += m_coeff[j] * (real)Cheby(j, i);
  61. ret += mul * xn;
  62. xn *= x;
  63. }
  64. return ret;
  65. }
  66. void RemezSolver::Init()
  67. {
  68. /* m_order + 1 Chebyshev coefficients, plus 1 error value */
  69. m_coeff.Resize(m_order + 2);
  70. /* m_order + 1 zeroes of the error function */
  71. m_zeroes.Resize(m_order + 1);
  72. /* m_order + 2 control points */
  73. m_control.Resize(m_order + 2);
  74. /* Pick up x_i where error will be 0 and compute f(x_i) */
  75. array<real> fxn;
  76. for (int i = 0; i < m_order + 1; i++)
  77. {
  78. m_zeroes[i] = (real)(2 * i - m_order) / (real)(m_order + 1);
  79. fxn.Push(EvalFunc(m_zeroes[i]));
  80. }
  81. /* We build a matrix of Chebishev evaluations: row i contains the
  82. * evaluations of x_i for polynomial order n = 0, 1, ... */
  83. LinearSystem<real> system(m_order + 1);
  84. for (int i = 0; i < m_order + 1; i++)
  85. {
  86. /* Compute the powers of x_i */
  87. array<real> powers;
  88. powers.Push(real(1.0));
  89. for (int n = 1; n < m_order + 1; n++)
  90. powers.Push(powers.Last() * m_zeroes[i]);
  91. /* Compute the Chebishev evaluations at x_i */
  92. for (int n = 0; n < m_order + 1; n++)
  93. {
  94. real sum = 0.0;
  95. for (int k = 0; k < m_order + 1; k++)
  96. sum += (real)Cheby(n, k) * powers[k];
  97. system.m(i, n) = sum;
  98. }
  99. }
  100. /* Solve the system */
  101. system = system.inv();
  102. /* Compute interpolation coefficients */
  103. for (int j = 0; j < m_order + 1; j++)
  104. {
  105. m_coeff[j] = 0;
  106. for (int i = 0; i < m_order + 1; i++)
  107. m_coeff[j] += system.m(j, i) * fxn[i];
  108. }
  109. }
  110. void RemezSolver::FindZeroes()
  111. {
  112. /* Find m_order + 1 zeroes of the error function. No need to
  113. * compute the relative error: its zeroes are at the same
  114. * place as the absolute error! */
  115. for (int i = 0; i < m_order + 1; i++)
  116. {
  117. struct { real value, error; } left, right, mid;
  118. left.value = m_control[i];
  119. left.error = EvalCheby(left.value) - EvalFunc(left.value);
  120. right.value = m_control[i + 1];
  121. right.error = EvalCheby(right.value) - EvalFunc(right.value);
  122. static real limit = ldexp((real)1, -500);
  123. static real zero = (real)0;
  124. while (fabs(left.value - right.value) > limit)
  125. {
  126. mid.value = (left.value + right.value) / 2;
  127. mid.error = EvalCheby(mid.value) - EvalFunc(mid.value);
  128. if ((left.error <= zero && mid.error <= zero)
  129. || (left.error >= zero && mid.error >= zero))
  130. left = mid;
  131. else
  132. right = mid;
  133. }
  134. m_zeroes[i] = mid.value;
  135. }
  136. }
  137. real RemezSolver::FindExtrema()
  138. {
  139. using std::printf;
  140. /* Find m_order + 2 extrema of the error function. We need to
  141. * compute the relative error, since its extrema are at slightly
  142. * different locations than the absolute error’s. */
  143. real final = 0;
  144. for (int i = 0; i < m_order + 2; i++)
  145. {
  146. real a = -1, b = 1;
  147. if (i > 0)
  148. a = m_zeroes[i - 1];
  149. if (i < m_order + 1)
  150. b = m_zeroes[i];
  151. for (int round = 0; ; round++)
  152. {
  153. real maxerror = 0, maxweight = 0;
  154. int best = -1;
  155. real c = a, delta = (b - a) / 4;
  156. for (int k = 0; k <= 4; k++)
  157. {
  158. if (round == 0 || (k & 1))
  159. {
  160. real error = fabs(EvalCheby(c) - EvalFunc(c));
  161. real weight = fabs(Weight(c));
  162. /* if error/weight >= maxerror/maxweight */
  163. if (error * maxweight >= maxerror * weight)
  164. {
  165. maxerror = error;
  166. maxweight = weight;
  167. best = k;
  168. }
  169. }
  170. c += delta;
  171. }
  172. switch (best)
  173. {
  174. case 0:
  175. b = a + delta * 2;
  176. break;
  177. case 4:
  178. a = b - delta * 2;
  179. break;
  180. default:
  181. b = a + delta * (best + 1);
  182. a = a + delta * (best - 1);
  183. break;
  184. }
  185. if (delta < m_epsilon)
  186. {
  187. real e = fabs(maxerror / maxweight);
  188. if (e > final)
  189. final = e;
  190. m_control[i] = (a + b) / 2;
  191. break;
  192. }
  193. }
  194. }
  195. return final;
  196. }
  197. void RemezSolver::Step()
  198. {
  199. /* Pick up x_i where error will be 0 and compute f(x_i) */
  200. array<real> fxn;
  201. for (int i = 0; i < m_order + 2; i++)
  202. fxn.Push(EvalFunc(m_control[i]));
  203. /* We build a matrix of Chebishev evaluations: row i contains the
  204. * evaluations of x_i for polynomial order n = 0, 1, ... */
  205. LinearSystem<real> system(m_order + 2);
  206. for (int i = 0; i < m_order + 2; i++)
  207. {
  208. /* Compute the powers of x_i */
  209. array<real> powers;
  210. powers.Push(real(1.0));
  211. for (int n = 1; n < m_order + 1; n++)
  212. powers.Push(powers.Last() * m_control[i]);
  213. /* Compute the Chebishev evaluations at x_i */
  214. for (int n = 0; n < m_order + 1; n++)
  215. {
  216. real sum = 0.0;
  217. for (int k = 0; k < m_order + 1; k++)
  218. sum += (real)Cheby(n, k) * powers[k];
  219. system.m(i, n) = sum;
  220. }
  221. if (i & 1)
  222. system.m(i, m_order + 1) = fabs(Weight(m_control[i]));
  223. else
  224. system.m(i, m_order + 1) = -fabs(Weight(m_control[i]));
  225. }
  226. /* Solve the system */
  227. system = system.inv();
  228. /* Compute interpolation coefficients */
  229. for (int j = 0; j < m_order + 1; j++)
  230. {
  231. m_coeff[j] = 0;
  232. for (int i = 0; i < m_order + 2; i++)
  233. m_coeff[j] += system.m(j, i) * fxn[i];
  234. }
  235. /* Compute the error */
  236. real error = 0;
  237. for (int i = 0; i < m_order + 2; i++)
  238. error += system.m(m_order + 1, i) * fxn[i];
  239. }
  240. int RemezSolver::Cheby(int n, int k)
  241. {
  242. if (k > n || k < 0)
  243. return 0;
  244. if (n <= 1)
  245. return (n ^ k ^ 1) & 1;
  246. return 2 * Cheby(n - 1, k - 1) - Cheby(n - 2, k);
  247. }
  248. int RemezSolver::Comb(int n, int k)
  249. {
  250. if (k == 0 || k == n)
  251. return 1;
  252. return Comb(n - 1, k - 1) + Comb(n - 1, k);
  253. }
  254. void RemezSolver::PrintPoly()
  255. {
  256. using std::printf;
  257. /* Transform Chebyshev polynomial weights into powers of X^i
  258. * in the [-1..1] range. */
  259. array<real> bn;
  260. for (int i = 0; i < m_order + 1; i++)
  261. {
  262. real tmp = 0;
  263. for (int j = 0; j < m_order + 1; j++)
  264. tmp += m_coeff[j] * (real)Cheby(j, i);
  265. bn.Push(tmp);
  266. }
  267. /* Transform a polynomial in the [-1..1] range into a polynomial
  268. * in the [a..b] range. */
  269. array<real> k1p, k2p, an;
  270. for (int i = 0; i < m_order + 1; i++)
  271. {
  272. k1p.Push(i ? k1p[i - 1] * m_invk1 : (real)1);
  273. k2p.Push(i ? k2p[i - 1] * m_invk2 : (real)1);
  274. }
  275. for (int i = 0; i < m_order + 1; i++)
  276. {
  277. real tmp = 0;
  278. for (int j = i; j < m_order + 1; j++)
  279. tmp += (real)Comb(j, i) * k1p[j - i] * bn[j];
  280. an.Push(tmp * k2p[i]);
  281. }
  282. printf("Polynomial estimate: ");
  283. for (int j = 0; j < m_order + 1; j++)
  284. {
  285. if (j)
  286. printf(" + x**%i * ", j);
  287. an[j].print(m_decimals);
  288. }
  289. printf("\n\n");
  290. }
  291. real RemezSolver::EvalFunc(real const &x)
  292. {
  293. return m_func(x * m_k2 + m_k1);
  294. }
  295. real RemezSolver::Weight(real const &x)
  296. {
  297. if (m_weight)
  298. return m_weight(x * m_k2 + m_k1);
  299. return 1;
  300. }