|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289 |
- //
- // Lol Engine
- //
- // Copyright: (c) 2010-2011 Sam Hocevar <sam@hocevar.net>
- // This program is free software; you can redistribute it and/or
- // modify it under the terms of the Do What The Fuck You Want To
- // Public License, Version 2, as published by Sam Hocevar. See
- // http://sam.zoy.org/projects/COPYING.WTFPL for more details.
- //
-
- #if defined HAVE_CONFIG_H
- # include "config.h"
- #endif
-
- #include <cstring>
- #include <cstdio>
-
- #include "core.h"
-
- using namespace std;
-
- namespace lol
- {
-
- real::real()
- {
- m_mantissa = new uint32_t[BIGITS];
- m_signexp = 0;
- }
-
- real::real(real const &x)
- {
- m_mantissa = new uint32_t[BIGITS];
- memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
- m_signexp = x.m_signexp;
- }
-
- real const &real::operator =(real const &x)
- {
- if (&x != this)
- {
- memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
- m_signexp = x.m_signexp;
- }
-
- return *this;
- }
-
- real::~real()
- {
- delete[] m_mantissa;
- }
-
- real::real(float f) { new(this) real((double)f); }
- real::real(int i) { new(this) real((double)i); }
- real::real(unsigned int i) { new(this) real((double)i); }
-
- real::real(double d)
- {
- new(this) real();
-
- union { double d; uint64_t x; } u = { d };
-
- uint32_t sign = (u.x >> 63) << 31;
- uint32_t exponent = (u.x << 1) >> 53;
-
- switch (exponent)
- {
- case 0x00:
- m_signexp = sign;
- break;
- case 0x7ff:
- m_signexp = sign | 0x7fffffffu;
- break;
- default:
- m_signexp = sign | (exponent + (1 << 30) - (1 << 10));
- break;
- }
-
- m_mantissa[0] = u.x >> 20;
- m_mantissa[1] = u.x << 12;
- memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0]));
- }
-
- real::operator float() const { return (float)(double)(*this); }
- real::operator int() const { return (int)(double)(*this); }
- real::operator unsigned int() const { return (unsigned int)(double)(*this); }
-
- real::operator double() const
- {
- union { double d; uint64_t x; } u;
-
- /* Get sign */
- u.x = m_signexp >> 31;
- u.x <<= 11;
-
- /* Compute new exponent */
- uint32_t exponent = (m_signexp << 1) >> 1;
- int e = (int)exponent - (1 << 30) + (1 << 10);
-
- if (e < 0)
- u.x <<= 52;
- else if (e >= 0x7ff)
- {
- u.x |= 0x7ff;
- u.x <<= 52;
- }
- else
- {
- u.x |= e;
-
- /* Store mantissa if necessary */
- u.x <<= 32;
- u.x |= m_mantissa[0];
- u.x <<= 20;
- u.x |= m_mantissa[1] >> 12;
- /* Rounding */
- u.x += (m_mantissa[1] >> 11) & 1;
- }
-
- return u.d;
- }
-
- real real::operator +() const
- {
- return *this;
- }
-
- real real::operator -() const
- {
- real ret = *this;
- ret.m_signexp ^= 0x80000000u;
- return ret;
- }
-
- real real::operator +(real const &x) const
- {
- if (x.m_signexp << 1 == 0)
- return *this;
-
- /* Ensure both arguments are positive. Otherwise, switch signs,
- * or replace + with -. */
- if (m_signexp >> 31)
- return -(-*this + -x);
-
- if (x.m_signexp >> 31)
- return *this - (-x);
-
- /* Ensure *this has the larger exponent (no need for the mantissa to
- * be larger, as in subtraction). Otherwise, switch. */
- if ((m_signexp << 1) < (x.m_signexp << 1))
- return x + *this;
-
- real ret;
-
- int e1 = m_signexp - (1 << 30) + 1;
- int e2 = x.m_signexp - (1 << 30) + 1;
-
- int bigoff = (e1 - e2) / BIGIT_BITS;
- int off = e1 - e2 - bigoff * BIGIT_BITS;
-
- if (bigoff > BIGITS)
- return *this;
-
- ret.m_signexp = m_signexp;
-
- uint64_t carry = 0;
- for (int i = BIGITS; i--; )
- {
- carry += m_mantissa[i];
- if (i - bigoff >= 0)
- carry += x.m_mantissa[i - bigoff] >> off;
-
- if (off && i - bigoff > 0)
- carry += (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
- else if (i - bigoff == 0)
- carry += (uint64_t)1 << (BIGIT_BITS - off);
-
- ret.m_mantissa[i] = carry;
- carry >>= BIGIT_BITS;
- }
-
- /* Renormalise in case we overflowed the mantissa */
- if (carry)
- {
- carry--;
- for (int i = 0; i < BIGITS; i++)
- {
- uint32_t tmp = ret.m_mantissa[i];
- ret.m_mantissa[i] = (carry << (BIGIT_BITS - 1)) | (tmp >> 1);
- carry = tmp & 1u;
- }
- ret.m_signexp++;
- }
-
- return ret;
- }
-
- real real::operator -(real const &x) const
- {
- if (x.m_signexp << 1 == 0)
- return *this;
-
- /* Ensure both arguments are positive. Otherwise, switch signs,
- * or replace - with +. */
- if (m_signexp >> 31)
- return -(-*this + x);
-
- if (x.m_signexp >> 31)
- return (*this) + (-x);
-
- /* Ensure *this is larger than x */
- if (*this < x)
- return -(x - *this);
-
- real ret;
-
- int e1 = m_signexp - (1 << 30) + 1;
- int e2 = x.m_signexp - (1 << 30) + 1;
-
- int bigoff = (e1 - e2) / BIGIT_BITS;
- int off = e1 - e2 - bigoff * BIGIT_BITS;
-
- if (bigoff > BIGITS)
- return *this;
-
- ret.m_signexp = m_signexp;
-
- int64_t carry = 0;
- for (int i = 0; i < bigoff; i++)
- {
- carry -= x.m_mantissa[BIGITS - 1 - i];
- /* Emulates a signed shift */
- carry >>= BIGIT_BITS;
- carry |= carry << BIGIT_BITS;
- }
- if (bigoff < BIGITS)
- carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1);
- carry /= (int64_t)1 << off;
-
- for (int i = BIGITS; i--; )
- {
- carry += m_mantissa[i];
- if (i - bigoff >= 0)
- carry -= x.m_mantissa[i - bigoff] >> off;
-
- if (off && i - bigoff > 0)
- carry -= (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
- else if (i - bigoff == 0)
- carry -= (uint64_t)1 << (BIGIT_BITS - off);
-
- ret.m_mantissa[i] = carry;
- carry >>= BIGIT_BITS;
- carry |= carry << BIGIT_BITS;
- }
-
- carry += 1;
-
- /* Renormalise if we underflowed the mantissa */
- if (carry == 0)
- {
- /* How much do we need to shift the mantissa? FIXME: this could
- * be computed above */
- off = 0;
- for (int i = 0; i < BIGITS; i++)
- {
- if (!ret.m_mantissa[i])
- {
- off += BIGIT_BITS;
- continue;
- }
-
- for (uint32_t tmp = ret.m_mantissa[i]; tmp < 0x80000000u; tmp <<= 1)
- off++;
- break;
- }
- if (off == BIGITS * BIGIT_BITS)
- ret.m_signexp &= 0x80000000u;
- else
- {
- off++; /* Shift one more to get rid of the leading one */
- ret.m_signexp -= off;
-
- bigoff = off / BIGIT_BITS;
- off -= bigoff * BIGIT_BITS;
-
- for (int i = 0; i < BIGITS; i++)
- {
- uint32_t tmp = 0;
- if (i + bigoff < BIGITS)
- tmp |= ret.m_mantissa[i + bigoff] << off;
- if (off && i + bigoff + 1 < BIGITS)
- tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off);
- ret.m_mantissa[i] = tmp;
- }
- }
- }
-
- return ret;
- }
-
- real real::operator *(real const &x) const
- {
- real ret;
-
- if (m_signexp << 1 == 0 || x.m_signexp << 1 == 0)
- {
- ret = (m_signexp << 1 == 0) ? *this : x;
- ret.m_signexp ^= x.m_signexp & 0x80000000u;
- return ret;
- }
-
- ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u;
- int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1
- + (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
-
- /* Accumulate low order product; no need to store it, we just
- * want the carry value */
- uint64_t carry = 0, hicarry = 0, prev;
- for (int i = 0; i < BIGITS; i++)
- {
- for (int j = 0; j < i + 1; j++)
- {
- prev = carry;
- carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
- * (uint64_t)x.m_mantissa[BIGITS - 1 + j - i];
- if (carry < prev)
- hicarry++;
- }
- carry >>= BIGIT_BITS;
- carry |= hicarry << BIGIT_BITS;
- hicarry >>= BIGIT_BITS;
- }
-
- for (int i = 0; i < BIGITS; i++)
- {
- for (int j = i + 1; j < BIGITS; j++)
- {
- prev = carry;
- carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
- * (uint64_t)x.m_mantissa[j - 1 - i];
- if (carry < prev)
- hicarry++;
- }
- prev = carry;
- carry += m_mantissa[BIGITS - 1 - i];
- carry += x.m_mantissa[BIGITS - 1 - i];
- if (carry < prev)
- hicarry++;
- ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu;
- carry >>= BIGIT_BITS;
- carry |= hicarry << BIGIT_BITS;
- hicarry >>= BIGIT_BITS;
- }
-
- /* Renormalise in case we overflowed the mantissa */
- if (carry)
- {
- carry--;
- for (int i = 0; i < BIGITS; i++)
- {
- uint32_t tmp = ret.m_mantissa[i];
- ret.m_mantissa[i] = (carry << (BIGIT_BITS - 1)) | (tmp >> 1);
- carry = tmp & 1u;
- }
- e++;
- }
-
- ret.m_signexp |= e + (1 << 30) - 1;
-
- return ret;
- }
-
- real real::operator /(real const &x) const
- {
- return *this * re(x);
- }
-
- real const &real::operator +=(real const &x)
- {
- real tmp = *this;
- return *this = tmp + x;
- }
-
- real const &real::operator -=(real const &x)
- {
- real tmp = *this;
- return *this = tmp - x;
- }
-
- real const &real::operator *=(real const &x)
- {
- real tmp = *this;
- return *this = tmp * x;
- }
-
- real const &real::operator /=(real const &x)
- {
- real tmp = *this;
- return *this = tmp / x;
- }
-
- real real::operator <<(int x) const
- {
- real tmp = *this;
- return tmp <<= x;
- }
-
- real real::operator >>(int x) const
- {
- real tmp = *this;
- return tmp >>= x;
- }
-
- real const &real::operator <<=(int x)
- {
- if (m_signexp << 1)
- m_signexp += x;
- return *this;
- }
-
- real const &real::operator >>=(int x)
- {
- if (m_signexp << 1)
- m_signexp -= x;
- return *this;
- }
-
- bool real::operator ==(real const &x) const
- {
- if ((m_signexp << 1) == 0 && (x.m_signexp << 1) == 0)
- return true;
-
- if (m_signexp != x.m_signexp)
- return false;
-
- return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0;
- }
-
- bool real::operator !=(real const &x) const
- {
- return !(*this == x);
- }
-
- bool real::operator <(real const &x) const
- {
- /* Ensure both numbers are positive */
- if (m_signexp >> 31)
- return (x.m_signexp >> 31) ? -*this > -x : true;
-
- if (x.m_signexp >> 31)
- return false;
-
- /* Compare all relevant bits */
- if (m_signexp != x.m_signexp)
- return m_signexp < x.m_signexp;
-
- for (int i = 0; i < BIGITS; i++)
- if (m_mantissa[i] != x.m_mantissa[i])
- return m_mantissa[i] < x.m_mantissa[i];
-
- return false;
- }
-
- bool real::operator <=(real const &x) const
- {
- return !(*this > x);
- }
-
- bool real::operator >(real const &x) const
- {
- /* Ensure both numbers are positive */
- if (m_signexp >> 31)
- return (x.m_signexp >> 31) ? -*this < -x : false;
-
- if (x.m_signexp >> 31)
- return true;
-
- /* Compare all relevant bits */
- if (m_signexp != x.m_signexp)
- return m_signexp > x.m_signexp;
-
- for (int i = 0; i < BIGITS; i++)
- if (m_mantissa[i] != x.m_mantissa[i])
- return m_mantissa[i] > x.m_mantissa[i];
-
- return false;
- }
-
- bool real::operator >=(real const &x) const
- {
- return !(*this < x);
- }
-
- bool real::operator !() const
- {
- return !(bool)*this;
- }
-
- real::operator bool() const
- {
- /* A real is "true" if it is non-zero (exponent is non-zero) AND
- * not NaN (exponent is not full bits OR higher order mantissa is zero) */
- uint32_t exponent = m_signexp << 1;
- return exponent && (~exponent || m_mantissa[0] == 0);
- }
-
- real re(real const &x)
- {
- if (!(x.m_signexp << 1))
- {
- real ret = x;
- ret.m_signexp = x.m_signexp | 0x7fffffffu;
- ret.m_mantissa[0] = 0;
- return ret;
- }
-
- /* Use the system's float inversion to approximate 1/x */
- union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
- v.x |= x.m_mantissa[0] >> 9;
- v.f = 1.0 / v.f;
-
- real ret;
- ret.m_mantissa[0] = v.x << 9;
-
- uint32_t sign = x.m_signexp & 0x80000000u;
- ret.m_signexp = sign;
-
- int exponent = (x.m_signexp & 0x7fffffffu) + 1;
- exponent = -exponent + (v.x >> 23) - (u.x >> 23);
- ret.m_signexp |= (exponent - 1) & 0x7fffffffu;
-
- /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn't been checked seriously. */
- for (int i = 1; i <= real::BIGITS; i *= 2)
- ret = ret * (real::R_2 - ret * x);
-
- return ret;
- }
-
- real sqrt(real const &x)
- {
- /* if zero, return x */
- if (!(x.m_signexp << 1))
- return x;
-
- /* if negative, return NaN */
- if (x.m_signexp >> 31)
- {
- real ret;
- ret.m_signexp = 0x7fffffffu;
- ret.m_mantissa[0] = 0xffffu;
- return ret;
- }
-
- /* Use the system's float inversion to approximate 1/sqrt(x). First
- * we construct a float in the [1..4[ range that has roughly the same
- * mantissa as our real. Its exponent is 0 or 1, depending on the
- * partity of x. The final exponent is 0, -1 or -2. We use the final
- * exponent and final mantissa to pre-fill the result. */
- union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f };
- v.x -= ((x.m_signexp & 1) << 23);
- v.x |= x.m_mantissa[0] >> 9;
- v.f = 1.0 / sqrtf(v.f);
-
- real ret;
- ret.m_mantissa[0] = v.x << 9;
-
- uint32_t sign = x.m_signexp & 0x80000000u;
- ret.m_signexp = sign;
-
- uint32_t exponent = (x.m_signexp & 0x7fffffffu);
- exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2;
- exponent = exponent + (v.x >> 23) - (u.x >> 23);
- ret.m_signexp |= exponent & 0x7fffffffu;
-
- /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn't been checked seriously. */
- for (int i = 1; i <= real::BIGITS; i *= 2)
- {
- ret = ret * (real::R_3 - ret * ret * x);
- ret.m_signexp--;
- }
-
- return ret * x;
- }
-
- real cbrt(real const &x)
- {
- /* if zero, return x */
- if (!(x.m_signexp << 1))
- return x;
-
- /* Use the system's float inversion to approximate cbrt(x). First
- * we construct a float in the [1..8[ range that has roughly the same
- * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
- * value of x. The final exponent is 0 or 1 (special case). We use
- * the final exponent and final mantissa to pre-fill the result. */
- union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
- v.x += ((x.m_signexp % 3) << 23);
- v.x |= x.m_mantissa[0] >> 9;
- v.f = powf(v.f, 0.33333333333333333f);
-
- real ret;
- ret.m_mantissa[0] = v.x << 9;
-
- uint32_t sign = x.m_signexp & 0x80000000u;
- ret.m_signexp = sign;
-
- int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
- exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23);
- ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu;
-
- /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn't been checked seriously. */
- for (int i = 1; i <= real::BIGITS; i *= 2)
- {
- static real third = re(real::R_3);
- ret = third * (x / (ret * ret) + (ret << 1));
- }
-
- return ret;
- }
-
- real pow(real const &x, real const &y)
- {
- if (!y)
- return real::R_1;
- if (!x)
- return real::R_0;
- if (x > real::R_0)
- return exp(y * log(x));
- else /* x < 0 */
- {
- if (y == round(y))
- return -exp(y * log(-x));
- /* FIXME: negative nth root */
- return real::R_0;
- }
- }
-
- real gamma(real const &x)
- {
- /* We use Spouge's formula. FIXME: precision is far from acceptable,
- * especially with large values. We need to compute this with higher
- * precision values in order to attain the desired accuracy. It might
- * also be useful to sort the ck values by decreasing absolute value
- * and do the addition in this order. */
- int a = ceilf(logf(2) / logf(2 * M_PI) * real::BIGITS * real::BIGIT_BITS);
-
- real ret = sqrt(real::R_PI << 1);
- real fact_k_1 = real::R_1;
-
- for (int k = 1; k < a; k++)
- {
- real a_k = (real)(a - k);
- real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
- / (fact_k_1 * (x + (real)(k - 1)));
- ret += ck;
- fact_k_1 *= (real)-k;
- }
-
- ret *= pow(x + (real)(a - 1), x - (real::R_1 >> 1));
- ret *= exp(-x - (real)(a - 1));
-
- return ret;
- }
-
- real fabs(real const &x)
- {
- real ret = x;
- ret.m_signexp &= 0x7fffffffu;
- return ret;
- }
-
- static real fast_log(real const &x)
- {
- /* This fast log method is tuned to work on the [1..2] range and
- * no effort whatsoever was made to improve convergence outside this
- * domain of validity. It can converge pretty fast, provided we use
- * the following variable substitutions:
- * y = sqrt(x)
- * z = (y - 1) / (y + 1)
- *
- * And the following identities:
- * ln(x) = 2 ln(y)
- * = 2 ln((1 + z) / (1 - z))
- * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
- *
- * Any additional sqrt() call would halve the convergence time, but
- * would also impact the final precision. For now we stick with one
- * sqrt() call. */
- real y = sqrt(x);
- real z = (y - real::R_1) / (y + real::R_1), z2 = z * z, zn = z2;
- real sum = real::R_1;
-
- for (int i = 3; ; i += 2)
- {
- real newsum = sum + zn / (real)i;
- if (newsum == sum)
- break;
- sum = newsum;
- zn *= z2;
- }
-
- return z * (sum << 2);
- }
-
- real log(real const &x)
- {
- /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
- * with the property that M is in [1..2[, so fast_log() applies here. */
- real tmp = x;
- if (x.m_signexp >> 31 || x.m_signexp == 0)
- {
- tmp.m_signexp = 0xffffffffu;
- tmp.m_mantissa[0] = 0xffffffffu;
- return tmp;
- }
- tmp.m_signexp = (1 << 30) - 1;
- return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2
- + fast_log(tmp);
- }
-
- real log2(real const &x)
- {
- /* Strategy for log2(x): see log(x). */
- real tmp = x;
- if (x.m_signexp >> 31 || x.m_signexp == 0)
- {
- tmp.m_signexp = 0xffffffffu;
- tmp.m_mantissa[0] = 0xffffffffu;
- return tmp;
- }
- tmp.m_signexp = (1 << 30) - 1;
- return (real)(int)(x.m_signexp - (1 << 30) + 1)
- + fast_log(tmp) * real::R_LOG2E;
- }
-
- real log10(real const &x)
- {
- return log(x) * real::R_LOG10E;
- }
-
- static real fast_exp_sub(real const &x, real const &y)
- {
- /* This fast exp method is tuned to work on the [-1..1] range and
- * no effort whatsoever was made to improve convergence outside this
- * domain of validity. The argument y is used for cases where we
- * don't want the leading 1 in the Taylor series. */
- real ret = real::R_1 - y, fact = real::R_1, xn = x;
-
- for (int i = 1; ; i++)
- {
- real newret = ret + xn;
- if (newret == ret)
- break;
- ret = newret;
- real mul = (i + 1);
- fact *= mul;
- ret *= mul;
- xn *= x;
- }
- ret /= fact;
-
- return ret;
- }
-
- real exp(real const &x)
- {
- /* Strategy for exp(x): the Taylor series does not converge very fast
- * with large positive or negative values.
- *
- * However, we know that the result is going to be in the form M*2^E,
- * where M is the mantissa and E the exponent. We first try to predict
- * a value for E, which is approximately log2(exp(x)) = x / log(2).
- *
- * Let E0 be an integer close to x / log(2). We need to find a value x0
- * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
- *
- * Thus the final algorithm:
- * int E0 = x / log(2)
- * real x0 = x - E0 log(2)
- * real x1 = exp(x0)
- * return x1 * 2^E0
- */
- int e0 = x / real::R_LN2;
- real x0 = x - (real)e0 * real::R_LN2;
- real x1 = fast_exp_sub(x0, real::R_0);
- x1.m_signexp += e0;
- return x1;
- }
-
- real exp2(real const &x)
- {
- /* Strategy for exp2(x): see strategy in exp(). */
- int e0 = x;
- real x0 = x - (real)e0;
- real x1 = fast_exp_sub(x0 * real::R_LN2, real::R_0);
- x1.m_signexp += e0;
- return x1;
- }
-
- real sinh(real const &x)
- {
- /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
- * accuracy near zero. We only use this identity for |x|>0.5. If
- * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
- bool near_zero = (fabs(x) < real::R_1 >> 1);
- real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x);
- real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x);
- return (x1 - x2) >> 1;
- }
-
- real tanh(real const &x)
- {
- /* See sinh() for the strategy here */
- bool near_zero = (fabs(x) < real::R_1 >> 1);
- real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x);
- real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x);
- real x3 = near_zero ? x1 + x2 + real::R_2 : x1 + x2;
- return (x1 - x2) / x3;
- }
-
- real cosh(real const &x)
- {
- /* No need to worry about accuracy here; maybe the last bit is slightly
- * off, but that's about it. */
- return (exp(x) + exp(-x)) >> 1;
- }
-
- real frexp(real const &x, int *exp)
- {
- if (!x)
- {
- *exp = 0;
- return x;
- }
-
- real ret = x;
- int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
- *exp = exponent + 1;
- ret.m_signexp -= exponent + 1;
- return ret;
- }
-
- real ldexp(real const &x, int exp)
- {
- real ret = x;
- if (ret)
- ret.m_signexp += exp;
- return ret;
- }
-
- real modf(real const &x, real *iptr)
- {
- real absx = fabs(x);
- real tmp = floor(absx);
-
- *iptr = copysign(tmp, x);
- return copysign(absx - tmp, x);
- }
-
- real copysign(real const &x, real const &y)
- {
- real ret = x;
- ret.m_signexp &= 0x7fffffffu;
- ret.m_signexp |= y.m_signexp & 0x80000000u;
- return ret;
- }
-
- real floor(real const &x)
- {
- /* Strategy for floor(x):
- * - if negative, return -ceil(-x)
- * - if zero or negative zero, return x
- * - if less than one, return zero
- * - otherwise, if e is the exponent, clear all bits except the
- * first e. */
- if (x < -real::R_0)
- return -ceil(-x);
- if (!x)
- return x;
- if (x < real::R_1)
- return real::R_0;
-
- real ret = x;
- int exponent = x.m_signexp - (1 << 30) + 1;
-
- for (int i = 0; i < real::BIGITS; i++)
- {
- if (exponent <= 0)
- ret.m_mantissa[i] = 0;
- else if (exponent < real::BIGIT_BITS)
- ret.m_mantissa[i] &= ~((1 << (real::BIGIT_BITS - exponent)) - 1);
-
- exponent -= real::BIGIT_BITS;
- }
-
- return ret;
- }
-
- real ceil(real const &x)
- {
- /* Strategy for ceil(x):
- * - if negative, return -floor(-x)
- * - if x == floor(x), return x
- * - otherwise, return floor(x) + 1 */
- if (x < -real::R_0)
- return -floor(-x);
- real ret = floor(x);
- if (x == ret)
- return ret;
- else
- return ret + real::R_1;
- }
-
- real round(real const &x)
- {
- if (x < real::R_0)
- return -round(-x);
-
- return floor(x + (real::R_1 >> 1));
- }
-
- real fmod(real const &x, real const &y)
- {
- if (!y)
- return real::R_0; /* FIXME: return NaN */
-
- if (!x)
- return x;
-
- real tmp = round(x / y);
- return x - tmp * y;
- }
-
- real sin(real const &x)
- {
- bool switch_sign = x.m_signexp & 0x80000000u;
-
- real absx = fmod(fabs(x), real::R_PI << 1);
- if (absx > real::R_PI)
- {
- absx -= real::R_PI;
- switch_sign = !switch_sign;
- }
-
- if (absx > real::R_PI_2)
- absx = real::R_PI - absx;
-
- real ret = real::R_0, fact = real::R_1, xn = absx, mx2 = -absx * absx;
- for (int i = 1; ; i += 2)
- {
- real newret = ret + xn;
- if (newret == ret)
- break;
- ret = newret;
- real mul = (i + 1) * (i + 2);
- fact *= mul;
- ret *= mul;
- xn *= mx2;
- }
- ret /= fact;
-
- /* Propagate sign */
- if (switch_sign)
- ret.m_signexp ^= 0x80000000u;
- return ret;
- }
-
- real cos(real const &x)
- {
- return sin(real::R_PI_2 - x);
- }
-
- real tan(real const &x)
- {
- /* Constrain input to [-π,π] */
- real y = fmod(x, real::R_PI);
-
- /* Constrain input to [-π/2,π/2] */
- if (y < -real::R_PI_2)
- y += real::R_PI;
- else if (y > real::R_PI_2)
- y -= real::R_PI;
-
- /* In [-π/4,π/4] return sin/cos */
- if (fabs(y) <= real::R_PI_4)
- return sin(y) / cos(y);
-
- /* Otherwise, return cos/sin */
- if (y > real::R_0)
- y = real::R_PI_2 - y;
- else
- y = -real::R_PI_2 - y;
-
- return cos(y) / sin(y);
- }
-
- static real asinacos(real const &x, bool is_asin, bool is_negative)
- {
- /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
- * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
- * in [-1..-0.5] just revert the sign.
- * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
- * lose the precision around x=1. */
- real absx = fabs(x);
- bool around_zero = (absx < (real::R_1 >> 1));
-
- if (!around_zero)
- absx = sqrt((real::R_1 - absx) >> 1);
-
- real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
- for (int i = 1; ; i++)
- {
- xn *= x2;
- real mul = (real)(2 * i + 1);
- real newret = ret + ((fact1 * xn / (mul * fact2)) >> (i * 2));
- if (newret == ret)
- break;
- ret = newret;
- fact1 *= (real)((2 * i + 1) * (2 * i + 2));
- fact2 *= (real)((i + 1) * (i + 1));
- }
-
- if (is_negative)
- ret = -ret;
-
- if (around_zero)
- ret = is_asin ? ret : real::R_PI_2 - ret;
- else
- {
- real adjust = is_negative ? real::R_PI : real::R_0;
- if (is_asin)
- ret = real::R_PI_2 - adjust - (ret << 1);
- else
- ret = adjust + (ret << 1);
- }
-
- return ret;
- }
-
- real asin(real const &x)
- {
- return asinacos(x, true, x.m_signexp >> 31);
- }
-
- real acos(real const &x)
- {
- return asinacos(x, false, x.m_signexp >> 31);
- }
-
- real atan(real const &x)
- {
- /* Computing atan(x): we choose a different Taylor series depending on
- * the value of x to help with convergence.
- *
- * If |x| < 0.5 we evaluate atan(y) near 0:
- * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
- *
- * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
- * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
- * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
- * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
- *
- * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
- * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
- * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
- * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
- * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
- * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
- * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
- *
- * If |x| >= 2 we evaluate atan(y) near +∞:
- * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
- */
- real absx = fabs(x);
-
- if (absx < (real::R_1 >> 1))
- {
- real ret = x, xn = x, mx2 = -x * x;
- for (int i = 3; ; i += 2)
- {
- xn *= mx2;
- real newret = ret + xn / (real)i;
- if (newret == ret)
- break;
- ret = newret;
- }
- return ret;
- }
-
- real ret = 0;
-
- if (absx < (real::R_3 >> 1))
- {
- real y = real::R_1 - absx;
- real yn = y, my2 = -y * y;
- for (int i = 0; ; i += 2)
- {
- real newret = ret + ((yn / (real)(2 * i + 1)) >> (i + 1));
- yn *= y;
- newret += (yn / (real)(2 * i + 2)) >> (i + 1);
- yn *= y;
- newret += (yn / (real)(2 * i + 3)) >> (i + 2);
- if (newret == ret)
- break;
- ret = newret;
- yn *= my2;
- }
- ret = real::R_PI_4 - ret;
- }
- else if (absx < real::R_2)
- {
- real y = (absx - real::R_SQRT3) >> 1;
- real yn = y, my2 = -y * y;
- for (int i = 1; ; i += 6)
- {
- real newret = ret + ((yn / (real)i) >> 1);
- yn *= y;
- newret -= (real::R_SQRT3 >> 1) * yn / (real)(i + 1);
- yn *= y;
- newret += yn / (real)(i + 2);
- yn *= y;
- newret -= (real::R_SQRT3 >> 1) * yn / (real)(i + 3);
- yn *= y;
- newret += (yn / (real)(i + 4)) >> 1;
- if (newret == ret)
- break;
- ret = newret;
- yn *= my2;
- }
- ret = real::R_PI_3 + ret;
- }
- else
- {
- real y = re(absx);
- real yn = y, my2 = -y * y;
- ret = y;
- for (int i = 3; ; i += 2)
- {
- yn *= my2;
- real newret = ret + yn / (real)i;
- if (newret == ret)
- break;
- ret = newret;
- }
- ret = real::R_PI_2 - ret;
- }
-
- /* Propagate sign */
- ret.m_signexp |= (x.m_signexp & 0x80000000u);
- return ret;
- }
-
- real atan2(real const &y, real const &x)
- {
- if (!y)
- {
- if ((x.m_signexp >> 31) == 0)
- return y;
- if (y.m_signexp >> 31)
- return -real::R_PI;
- return real::R_PI;
- }
-
- if (!x)
- {
- if (y.m_signexp >> 31)
- return -real::R_PI;
- return real::R_PI;
- }
-
- /* FIXME: handle the Inf and NaN cases */
- real z = y / x;
- real ret = atan(z);
- if (x < real::R_0)
- ret += (y > real::R_0) ? real::R_PI : -real::R_PI;
- return ret;
- }
-
- void real::hexprint() const
- {
- printf("%08x", m_signexp);
- for (int i = 0; i < BIGITS; i++)
- printf(" %08x", m_mantissa[i]);
- printf("\n");
- }
-
- void real::print(int ndigits) const
- {
- real x = *this;
-
- if (x.m_signexp >> 31)
- {
- printf("-");
- x = -x;
- }
-
- /* Normalise x so that mantissa is in [1..9.999] */
- int exponent = 0;
- if (x.m_signexp)
- {
- for (real div = R_1, newdiv; true; div = newdiv)
- {
- newdiv = div * R_10;
- if (x < newdiv)
- {
- x /= div;
- break;
- }
- exponent++;
- }
- for (real mul = 1, newx; true; mul *= R_10)
- {
- newx = x * mul;
- if (newx >= R_1)
- {
- x = newx;
- break;
- }
- exponent--;
- }
- }
-
- /* Print digits */
- for (int i = 0; i < ndigits; i++)
- {
- int digit = (int)x;
- printf("%i", digit);
- if (i == 0)
- printf(".");
- x -= real(digit);
- x *= R_10;
- }
-
- /* Print exponent information */
- if (exponent < 0)
- printf("e-%i", -exponent);
- else if (exponent > 0)
- printf("e+%i", exponent);
-
- printf("\n");
- }
-
- static real fast_pi()
- {
- /* Approximate Pi using Machin's formula: 16*atan(1/5)-4*atan(1/239) */
- real ret = 0.0, x0 = 5.0, x1 = 239.0;
- real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16.0, r4 = 4.0;
-
- for (int i = 1; ; i += 2)
- {
- real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
- if (newret == ret)
- break;
- ret = newret;
- x0 *= m0;
- x1 *= m1;
- }
-
- return ret;
- }
-
- real const real::R_0 = (real)0.0;
- real const real::R_1 = (real)1.0;
- real const real::R_2 = (real)2.0;
- real const real::R_3 = (real)3.0;
- real const real::R_10 = (real)10.0;
-
- real const real::R_LN2 = fast_log(R_2);
- real const real::R_LN10 = log(R_10);
- real const real::R_LOG2E = re(R_LN2);
- real const real::R_LOG10E = re(R_LN10);
- real const real::R_E = exp(R_1);
- real const real::R_PI = fast_pi();
- real const real::R_PI_2 = R_PI >> 1;
- real const real::R_PI_3 = R_PI / R_3;
- real const real::R_PI_4 = R_PI >> 2;
- real const real::R_1_PI = re(R_PI);
- real const real::R_2_PI = R_1_PI << 1;
- real const real::R_2_SQRTPI = re(sqrt(R_PI)) << 1;
- real const real::R_SQRT2 = sqrt(R_2);
- real const real::R_SQRT3 = sqrt(R_3);
- real const real::R_SQRT1_2 = R_SQRT2 >> 1;
-
- } /* namespace lol */
-
|