|
@@ -17,6 +17,27 @@ |
|
|
namespace lol |
|
|
namespace lol |
|
|
{ |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* Simplex noise in dimension N |
|
|
|
|
|
* ---------------------------- |
|
|
|
|
|
* |
|
|
|
|
|
* The N-dimensional regular hypercube can be split into N! simplices that |
|
|
|
|
|
* all have the main diagonal as a shared edge. |
|
|
|
|
|
* - number of simplices: N! |
|
|
|
|
|
* - number of vertices per simplex: N+1 |
|
|
|
|
|
* - number of edges: N(N+1)/2 |
|
|
|
|
|
* - minimum edge length: 1 (hypercube edges, e.g. [1,0,0,…,0]) |
|
|
|
|
|
* - maximum edge length: sqrt(N) (hypercube diagonal, i.e. [1,1,1,…,1]) |
|
|
|
|
|
* |
|
|
|
|
|
* We skew the simplicial grid along the main diagonal by a factor f = |
|
|
|
|
|
* sqrt(N+1), which means the diagonal of the initial parallelotope has |
|
|
|
|
|
* length sqrt(N/(N+1)). The edges of that parallelotope have length |
|
|
|
|
|
* sqrt(N/(N+1)), too. A formula for the maximum edge length was found |
|
|
|
|
|
* empirically: |
|
|
|
|
|
* - minimum edge length: sqrt(N/(N+1)) (parallelotope edges and diagonal) |
|
|
|
|
|
* - maximum edge length: sqrt(floor((N+1)²/4)/(N+1)) |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
template<int N> |
|
|
template<int N> |
|
|
class simplex_interpolator |
|
|
class simplex_interpolator |
|
|
{ |
|
|
{ |
|
@@ -24,165 +45,218 @@ public: |
|
|
simplex_interpolator(int seed = 0) |
|
|
simplex_interpolator(int seed = 0) |
|
|
: m_seed(seed) |
|
|
: m_seed(seed) |
|
|
{ |
|
|
{ |
|
|
/* Matrix coordinate transformation to skew simplex referential is done |
|
|
|
|
|
* by inverting the base matrix M which is written as follows: |
|
|
|
|
|
* |
|
|
|
|
|
* M = | a b b b … | M^(-1) = | c d d d … | |
|
|
|
|
|
* | b a b b … | | d c d d … | |
|
|
|
|
|
* | b b a b … | | d d c d … | |
|
|
|
|
|
* | … | | … | |
|
|
|
|
|
* |
|
|
|
|
|
* where a, b, c, d are computed below ↴ |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
float b = (1.f - lol::sqrt(N + 1.f)) / lol::sqrt((float)N * N * N); |
|
|
|
|
|
float a = b + lol::sqrt((N + 1.f) / N); |
|
|
|
|
|
|
|
|
|
|
|
// determinant of matrix M |
|
|
|
|
|
float det = a * (a + (N - 2) * b) - (b * b) * (N - 1); |
|
|
|
|
|
|
|
|
|
|
|
float c = (a + (N - 2) * b) / det; |
|
|
|
|
|
float d = -b / det; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if 0 |
|
|
|
|
|
// Print some debug information |
|
|
|
|
|
printf("Simplex Noise of Dimension %d\n", N); |
|
|
|
|
|
|
|
|
|
|
|
long long int n = 1; for (int i = 1; i <= N; ++i) n *= i; |
|
|
|
|
|
printf(" - each hypercube cell has %lld simplices " |
|
|
|
|
|
"with %d vertices and %d edges\n", n, N + 1, N * (N + 1) / 2); |
|
|
|
|
|
|
|
|
|
|
|
vec_t<float, N> diagonal(1.f); |
|
|
|
|
|
printf(" - length of hypercube edges is 1, diagonal is %f\n", |
|
|
|
|
|
length(diagonal)); |
|
|
|
|
|
printf(" - length of parallelotope edges and diagonal is %f\n", |
|
|
|
|
|
length(unskew(diagonal))); |
|
|
|
|
|
|
|
|
|
|
|
vec_t<float, N> vertices[N + 1]; |
|
|
|
|
|
vertices[0] = vec_t<float, N>(0.f); |
|
|
for (int i = 0; i < N; ++i) |
|
|
for (int i = 0; i < N; ++i) |
|
|
{ |
|
|
{ |
|
|
for (int j = 0; j < N; ++j) |
|
|
|
|
|
|
|
|
vertices[i + 1] = vertices[i]; |
|
|
|
|
|
vertices[i + 1][i] += 1.f; |
|
|
|
|
|
} |
|
|
|
|
|
float minlength = 10.0f; |
|
|
|
|
|
float maxlength = 0.0f; |
|
|
|
|
|
for (int i = 0; i < N + 1; ++i) |
|
|
|
|
|
for (int j = i + 1; j < N + 1; ++j) |
|
|
{ |
|
|
{ |
|
|
m_base[i][j] = (i == j ? a : b); |
|
|
|
|
|
m_base_inverse[i][j] = (i == j ? c : d); |
|
|
|
|
|
|
|
|
float l = length(unskew(vertices[i] - vertices[j])); |
|
|
|
|
|
minlength = min(minlength, l); |
|
|
|
|
|
maxlength = max(maxlength, l); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
printf(" - edge lengths between %f and %f\n", minlength, maxlength); |
|
|
|
|
|
printf(" - predicted: %f and %f\n", sqrt((float)N/(N+1)), |
|
|
|
|
|
sqrt((N+1)*(N+1)/4/(float)(N+1))); |
|
|
|
|
|
printf("\n"); |
|
|
|
|
|
#endif |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// Single interpolation |
|
|
|
|
|
|
|
|
/* Single interpolation */ |
|
|
inline float Interp(vec_t<float, N> position) const |
|
|
inline float Interp(vec_t<float, N> position) const |
|
|
{ |
|
|
{ |
|
|
// Computing position in simplex referential |
|
|
|
|
|
vec_t<float, N> simplex_position = m_base_inverse * position; |
|
|
|
|
|
|
|
|
|
|
|
// Retrieving the closest floor point and decimals |
|
|
|
|
|
|
|
|
// Retrieve the containing hypercube origin and associated decimals |
|
|
vec_t<int, N> origin; |
|
|
vec_t<int, N> origin; |
|
|
vec_t<float, N> pos; |
|
|
vec_t<float, N> pos; |
|
|
|
|
|
get_origin(skew(position), origin, pos); |
|
|
|
|
|
|
|
|
this->ExtractFloorDecimal(simplex_position, origin, pos); |
|
|
|
|
|
|
|
|
|
|
|
vec_t<int, N> index_order = this->GetIndexOrder(pos); |
|
|
|
|
|
|
|
|
|
|
|
// Resetting decimal point in regular orthonormal coordinates |
|
|
|
|
|
pos = m_base * pos; |
|
|
|
|
|
|
|
|
return get_noise(origin, pos); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
return this->LastInterp(origin, pos, index_order); |
|
|
|
|
|
|
|
|
/* Only for debug purposes: return the gradient vector */ |
|
|
|
|
|
inline vec_t<float, N> GetGradient(vec_t<float, N> position) const |
|
|
|
|
|
{ |
|
|
|
|
|
vec_t<int, N> origin; |
|
|
|
|
|
vec_t<float, N> pos; |
|
|
|
|
|
get_origin(skew(position), origin, pos); |
|
|
|
|
|
return get_gradient(origin); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
protected: |
|
|
protected: |
|
|
inline float LastInterp(vec_t<int, N> origin, |
|
|
|
|
|
vec_t<float, N> const & pos, |
|
|
|
|
|
vec_t<int, N> const & index_order) const |
|
|
|
|
|
|
|
|
inline float get_noise(vec_t<int, N> origin, |
|
|
|
|
|
vec_t<float, N> const & pos) const |
|
|
{ |
|
|
{ |
|
|
/* “corner” will traverse the simplex along its edges in |
|
|
|
|
|
* orthonormal coordinates. */ |
|
|
|
|
|
vec_t<float, N> corner(0); |
|
|
|
|
|
float result = 0; |
|
|
|
|
|
|
|
|
/* For a given position [0…1]^N inside a regular N-hypercube, find |
|
|
|
|
|
* the N-simplex which contains that position, and return a path |
|
|
|
|
|
* along the hypercube edges from (0,0,…,0) to (1,1,…,1) which |
|
|
|
|
|
* uniquely describes that simplex. */ |
|
|
|
|
|
vec_t<int, N> traversal_order; |
|
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
|
traversal_order[i] = i; |
|
|
|
|
|
|
|
|
|
|
|
/* Naïve bubble sort — enough for now */ |
|
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
|
for (int j = i + 1; j < N; ++j) |
|
|
|
|
|
if (pos[traversal_order[i]] < pos[traversal_order[j]]) |
|
|
|
|
|
std::swap(traversal_order[i], traversal_order[j]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Get the position in world coordinates, too */ |
|
|
|
|
|
vec_t<float, N> world_pos = unskew(pos); |
|
|
|
|
|
|
|
|
|
|
|
/* “corner” will traverse the simplex along its edges in world |
|
|
|
|
|
* coordinates. */ |
|
|
|
|
|
vec_t<float, N> world_corner(0.f); |
|
|
|
|
|
float result = 0.f, coeff = 0.f; |
|
|
|
|
|
|
|
|
for (int i = 0; i < N + 1; ++i) |
|
|
for (int i = 0; i < N + 1; ++i) |
|
|
{ |
|
|
{ |
|
|
vec_t<float, N> const delta = pos - corner; |
|
|
|
|
|
vec_t<float, N> const &gradient = GetGradient(origin); |
|
|
|
|
|
|
|
|
|
|
|
/* We use 4/3 because the maximum radius of influence for |
|
|
|
|
|
* a given corner is sqrt(3/4). FIXME: check whether this |
|
|
|
|
|
* holds for higher dimensions. */ |
|
|
|
|
|
float dist = 1.0f - 4.f / 3.f * sqlength(delta); |
|
|
|
|
|
if (dist > 0) |
|
|
|
|
|
|
|
|
#if 1 |
|
|
|
|
|
// FIXME: In “Noise Hardware” (2-17) Perlin uses 0.6 but Gustavson |
|
|
|
|
|
// makes an exception for dimension 2 and uses 0.5 instead. |
|
|
|
|
|
// I think m should actually increase with the dimension count. |
|
|
|
|
|
float const m = N == 2 ? 0.5f : 0.6f; |
|
|
|
|
|
float d = m - sqlength(world_pos - world_corner); |
|
|
|
|
|
#else |
|
|
|
|
|
// DEBUG: this is the linear contribution of each vertex |
|
|
|
|
|
// in the skewed simplex. Unfortunately it creates artifacts. |
|
|
|
|
|
float d = ((i == 0) ? 1.f : pos[traversal_order[i - 1]]) |
|
|
|
|
|
- ((i == N) ? 0.f : pos[traversal_order[i]]); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
if (d > 0) |
|
|
{ |
|
|
{ |
|
|
dist *= dist; |
|
|
|
|
|
result += dist * dist * dot(gradient, delta); |
|
|
|
|
|
|
|
|
vec_t<float, N> const &gradient = get_gradient(origin); |
|
|
|
|
|
|
|
|
|
|
|
// Perlin uses 8d⁴ whereas Gustavson uses d⁴ and a final |
|
|
|
|
|
// multiplication factor at the end. |
|
|
|
|
|
//d = 8.f * d * d * d * d; |
|
|
|
|
|
d = d * d * d * d; |
|
|
|
|
|
|
|
|
|
|
|
//d = (3.f - 2.f * d) * d * d; |
|
|
|
|
|
//d = ((6 * d - 15) * d + 10) * d * d * d; |
|
|
|
|
|
|
|
|
|
|
|
result += d * dot(gradient, world_pos - world_corner); |
|
|
|
|
|
coeff += d; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (i < N) |
|
|
if (i < N) |
|
|
{ |
|
|
{ |
|
|
corner += m_base[index_order[i]]; |
|
|
|
|
|
origin[index_order[i]] += 1; |
|
|
|
|
|
|
|
|
vec_t<float, N> v(0.f); |
|
|
|
|
|
v[traversal_order[i]] = 1.f; |
|
|
|
|
|
world_corner += unskew(v); |
|
|
|
|
|
origin[traversal_order[i]] += 1; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// FIXME: another paper uses the value 70 for dimension 2, 32 for |
|
|
|
|
|
// dimension 3, and 27 for dimension 4; find where this comes from. |
|
|
|
|
|
return result * 70.f / 16.f; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* For a given position [0…1]^n inside a square/cube/hypercube etc., |
|
|
|
|
|
* find the simplex which contains that position, and return the path |
|
|
|
|
|
* from (0,0,…,0) to (1,1,…,1) that describes that simplex. */ |
|
|
|
|
|
inline vec_t<int, N> GetIndexOrder(vec_t<float, N> const & pos) const |
|
|
|
|
|
{ |
|
|
|
|
|
vec_t<int, N> result; |
|
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
|
result[i] = i; |
|
|
|
|
|
|
|
|
|
|
|
/* Naïve bubble sort — enough for now */ |
|
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
|
for (int j = i + 1; j < N; ++j) |
|
|
|
|
|
if (pos[result[i]] < pos[result[j]]) |
|
|
|
|
|
std::swap(result[i], result[j]); |
|
|
|
|
|
|
|
|
|
|
|
return result; |
|
|
|
|
|
|
|
|
// FIXME: Gustavson uses the value 70 for dimension 2, 32 for |
|
|
|
|
|
// dimension 3, and 27 for dimension 4; find where this comes from |
|
|
|
|
|
// and maybe find a reasonable formula. |
|
|
|
|
|
//return 70.f * result / coeff; |
|
|
|
|
|
float const k = N == 2 ? 70 : N == 3 ? 32 : N == 4 ? 27 : 20; |
|
|
|
|
|
return k * result; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
inline vec_t<float, N> GetGradient(vec_t<int, N> origin) const |
|
|
|
|
|
|
|
|
inline vec_t<float, N> get_gradient(vec_t<int, N> origin) const |
|
|
{ |
|
|
{ |
|
|
/* Quick shuffle table: |
|
|
/* Quick shuffle table: |
|
|
* strings /dev/urandom | grep . -nm256 | sort -k2 -t: | sed 's|:.*|,|' |
|
|
* strings /dev/urandom | grep . -nm256 | sort -k2 -t: | sed 's|:.*|,|' |
|
|
* Then just replace “256” with “0”. */ |
|
|
* Then just replace “256” with “0”. */ |
|
|
static int const shuffle[256] = |
|
|
static int const shuffle[256] = |
|
|
{ |
|
|
{ |
|
|
111, 14, 180, 186, 221, 114, 17, 79, 66, 46, 11, 81, 246, 200, 141, |
|
|
|
|
|
172, 85, 244, 112, 92, 34, 106, 218, 205, 236, 7, 121, 115, 109, |
|
|
|
|
|
131, 10, 96, 188, 148, 219, 107, 94, 182, 235, 163, 143, 213, 248, |
|
|
|
|
|
202, 52, 154, 37, 241, 53, 129, 25, 60, 242, 38, 171, 63, 203, 255, |
|
|
|
|
|
193, 6, 42, 209, 28, 176, 210, 159, 54, 144, 3, 71, 89, 116, 12, |
|
|
|
|
|
237, 67, 216, 252, 178, 174, 164, 98, 234, 32, 26, 175, 24, 130, |
|
|
|
|
|
128, 113, 99, 212, 62, 152, 75, 185, 73, 93, 31, 30, 151, 122, 173, |
|
|
|
|
|
139, 91, 136, 162, 194, 208, 56, 101, 68, 69, 211, 44, 97, 55, 83, |
|
|
|
|
|
33, 50, 119, 156, 149, 41, 157, 253, 247, 161, 47, 230, 166, 225, |
|
|
|
|
|
204, 224, 13, 110, 123, 142, 64, 65, 155, 215, 120, 197, 140, 58, |
|
|
|
|
|
77, 214, 126, 195, 179, 220, 232, 125, 147, 8, 39, 187, 27, 217, |
|
|
|
|
|
100, 134, 199, 88, 206, 231, 250, 74, 2, 135, 9, 245, 118, 21, 243, |
|
|
|
|
|
82, 183, 238, 87, 158, 61, 4, 177, 146, 153, 117, 249, 254, 233, |
|
|
|
|
|
90, 222, 207, 48, 15, 18, 20, 239, 133, 0, 165, 138, 127, 169, 72, |
|
|
|
|
|
1, 201, 145, 191, 192, 16, 49, 19, 95, 226, 228, 84, 181, 251, 36, |
|
|
|
|
|
150, 22, 43, 70, 45, 105, 5, 189, 160, 196, 40, 59, 57, 190, 80, |
|
|
|
|
|
104, 167, 78, 124, 103, 240, 184, 170, 137, 29, 23, 223, 108, 102, |
|
|
|
|
|
86, 198, 227, 35, 229, 76, 168, 132, 51, |
|
|
|
|
|
|
|
|
111, 14, 180, 186, 221, 114, 219, 79, 66, 46, 152, 81, 246, 200, |
|
|
|
|
|
141, 172, 85, 244, 112, 92, 34, 106, 218, 205, 236, 7, 121, 115, |
|
|
|
|
|
109, 131, 10, 96, 188, 148, 17, 107, 94, 182, 235, 163, 143, 63, |
|
|
|
|
|
248, 202, 52, 154, 37, 241, 53, 129, 25, 159, 242, 38, 171, 213, |
|
|
|
|
|
6, 203, 255, 193, 42, 209, 28, 176, 210, 60, 54, 144, 3, 71, 89, |
|
|
|
|
|
116, 12, 237, 67, 216, 252, 178, 174, 164, 98, 234, 32, 26, 175, |
|
|
|
|
|
24, 130, 128, 113, 99, 212, 62, 11, 75, 185, 73, 93, 31, 30, 44, |
|
|
|
|
|
122, 173, 139, 91, 136, 162, 194, 41, 56, 101, 68, 69, 211, 151, |
|
|
|
|
|
97, 55, 83, 33, 50, 119, 156, 149, 208, 157, 253, 247, 161, 133, |
|
|
|
|
|
230, 166, 225, 204, 224, 13, 110, 123, 142, 64, 65, 155, 215, 9, |
|
|
|
|
|
197, 140, 58, 77, 214, 126, 195, 179, 220, 232, 125, 147, 8, 39, |
|
|
|
|
|
187, 27, 217, 100, 134, 199, 88, 206, 231, 250, 74, 2, 135, 120, |
|
|
|
|
|
21, 245, 118, 243, 82, 183, 238, 150, 158, 61, 4, 177, 146, 153, |
|
|
|
|
|
117, 249, 254, 233, 90, 222, 207, 48, 15, 18, 20, 16, 47, 0, 51, |
|
|
|
|
|
165, 138, 127, 169, 72, 1, 201, 145, 191, 192, 239, 49, 19, 160, |
|
|
|
|
|
226, 228, 84, 181, 251, 36, 87, 22, 43, 70, 45, 105, 5, 189, 95, |
|
|
|
|
|
40, 196, 59, 57, 190, 80, 104, 167, 78, 124, 103, 240, 184, 170, |
|
|
|
|
|
137, 29, 23, 223, 108, 102, 86, 198, 227, 35, 229, 76, 168, 132, |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
/* 16 random vectors; this should be enough for small dimensions */ |
|
|
|
|
|
auto v = [&]() |
|
|
|
|
|
{ |
|
|
|
|
|
vec_t<float, N> ret; |
|
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
|
ret[i] = rand(-1.f, 1.f); |
|
|
|
|
|
return normalize(ret); |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
/* Generate 2^(N+2) random vectors, but at least 2^5 (32) and not |
|
|
|
|
|
* more than 2^20 (~ 1 million). */ |
|
|
|
|
|
int const gradient_count = 1 << min(max(N + 2, 5), 20); |
|
|
|
|
|
|
|
|
static vec_t<float, N> const gradients[16] = |
|
|
|
|
|
|
|
|
static auto build_gradients = [&]() |
|
|
{ |
|
|
{ |
|
|
v(), v(), v(), v(), v(), v(), v(), v(), |
|
|
|
|
|
v(), v(), v(), v(), v(), v(), v(), v(), |
|
|
|
|
|
|
|
|
array<vec_t<float, N>> ret; |
|
|
|
|
|
for (int k = 0; k < gradient_count; ++k) |
|
|
|
|
|
{ |
|
|
|
|
|
vec_t<float, N> v; |
|
|
|
|
|
for (int i = 0; i < N; ++i) |
|
|
|
|
|
v[i] = rand(-1.f, 1.f); |
|
|
|
|
|
ret << normalize(v); |
|
|
|
|
|
} |
|
|
|
|
|
return ret; |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
static array<vec_t<float, N>> const gradients = build_gradients(); |
|
|
|
|
|
|
|
|
int idx = m_seed; |
|
|
int idx = m_seed; |
|
|
for (int i = 0; i < N; ++i) |
|
|
for (int i = 0; i < N; ++i) |
|
|
idx = shuffle[(idx + origin[i]) & 255]; |
|
|
|
|
|
|
|
|
idx ^= shuffle[(idx + origin[i]) & 255]; |
|
|
|
|
|
|
|
|
|
|
|
idx &= (gradient_count - 1); |
|
|
|
|
|
#if 0 |
|
|
|
|
|
// DEBUG: only output a few gradients |
|
|
|
|
|
if (idx > 2) |
|
|
|
|
|
return vec_t<float, N>(0); |
|
|
|
|
|
#endif |
|
|
|
|
|
return gradients[idx]; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
return gradients[(idx ^ (idx >> 4)) & 15]; |
|
|
|
|
|
|
|
|
static inline vec_t<float, N> skew(vec_t<float, N> const &v) |
|
|
|
|
|
{ |
|
|
|
|
|
/* Quoting Perlin in “Hardware Noise” (2-18): |
|
|
|
|
|
* The “skew factor” f should be set to f = sqrt(N+1), so that |
|
|
|
|
|
* the point (1,1,...1) is transformed to the point (f,f,...f). */ |
|
|
|
|
|
float const sum = dot(v, vec_t<float, N>(1)); |
|
|
|
|
|
float const f = sqrt(1.f + N); |
|
|
|
|
|
return v + vec_t<float, N>(sum * (f - 1) / N); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static inline vec_t<float, N> unskew(vec_t<float, N> const &v) |
|
|
|
|
|
{ |
|
|
|
|
|
float const sum = dot(v, vec_t<float, N>(1)); |
|
|
|
|
|
float const f = sqrt(1.f + N); |
|
|
|
|
|
return v + vec_t<float, N>(sum * (1 / f - 1) / N); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
/* For a given world position, extract grid coordinates (origin) and |
|
|
/* For a given world position, extract grid coordinates (origin) and |
|
|
* the corresponding delta position (pos). */ |
|
|
* the corresponding delta position (pos). */ |
|
|
inline void ExtractFloorDecimal(vec_t<float, N> const & simplex_position, |
|
|
|
|
|
vec_t<int, N> & origin, |
|
|
|
|
|
vec_t<float, N> & pos) const |
|
|
|
|
|
|
|
|
inline void get_origin(vec_t<float, N> const & simplex_position, |
|
|
|
|
|
vec_t<int, N> & origin, vec_t<float, N> & pos) const |
|
|
{ |
|
|
{ |
|
|
// Finding floor point index |
|
|
// Finding floor point index |
|
|
for (int i = 0; i < N; ++i) |
|
|
for (int i = 0; i < N; ++i) |
|
@@ -192,7 +266,7 @@ protected: |
|
|
pos = simplex_position - (vec_t<float, N>)origin; |
|
|
pos = simplex_position - (vec_t<float, N>)origin; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
mat_t<float, N, N> m_base, m_base_inverse; |
|
|
|
|
|
|
|
|
/* A user-provided random seed. Defaults to zero. */ |
|
|
int m_seed; |
|
|
int m_seed; |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|