|
|
@@ -79,15 +79,15 @@ LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2); |
|
|
|
|
|
|
|
template<> real::Real() |
|
|
|
{ |
|
|
|
m_mantissa = new uint32_t[BIGITS]; |
|
|
|
memset(m_mantissa, 0, BIGITS * sizeof(uint32_t)); |
|
|
|
m_mantissa = new uint32_t[BIGIT_COUNT]; |
|
|
|
memset(m_mantissa, 0, BIGIT_COUNT * sizeof(uint32_t)); |
|
|
|
m_signexp = 0; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::Real(real const &x) |
|
|
|
{ |
|
|
|
m_mantissa = new uint32_t[BIGITS]; |
|
|
|
memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)); |
|
|
|
m_mantissa = new uint32_t[BIGIT_COUNT]; |
|
|
|
memcpy(m_mantissa, x.m_mantissa, BIGIT_COUNT * sizeof(uint32_t)); |
|
|
|
m_signexp = x.m_signexp; |
|
|
|
} |
|
|
|
|
|
|
@@ -95,7 +95,7 @@ template<> real const &real::operator =(real const &x) |
|
|
|
{ |
|
|
|
if (&x != this) |
|
|
|
{ |
|
|
|
memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)); |
|
|
|
memcpy(m_mantissa, x.m_mantissa, BIGIT_COUNT * sizeof(uint32_t)); |
|
|
|
m_signexp = x.m_signexp; |
|
|
|
} |
|
|
|
|
|
|
@@ -133,13 +133,13 @@ template<> real::Real(double d) |
|
|
|
m_signexp = sign | 0x7fffffffu; |
|
|
|
break; |
|
|
|
default: |
|
|
|
m_signexp = sign | (exponent + (1 << 30) - (1 << 10)); |
|
|
|
m_signexp = sign | (exponent + EXPONENT_BIAS - ((1 << 10) - 1)); |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
m_mantissa[0] = (uint32_t)(u.x >> 20); |
|
|
|
m_mantissa[1] = (uint32_t)(u.x << 12); |
|
|
|
memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0])); |
|
|
|
memset(m_mantissa + 2, 0, (BIGIT_COUNT - 2) * sizeof(m_mantissa[0])); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::Real(long double f) |
|
|
@@ -166,7 +166,7 @@ template<> real::operator double() const |
|
|
|
|
|
|
|
/* Compute new exponent */ |
|
|
|
uint32_t exponent = (m_signexp << 1) >> 1; |
|
|
|
int e = (int)exponent - (1 << 30) + (1 << 10); |
|
|
|
int e = (int)exponent - EXPONENT_BIAS + ((1 << 10) - 1); |
|
|
|
|
|
|
|
if (e < 0) |
|
|
|
u.x <<= 52; |
|
|
@@ -316,19 +316,19 @@ template<> real real::operator +(real const &x) const |
|
|
|
|
|
|
|
real ret; |
|
|
|
|
|
|
|
int e1 = m_signexp - (1 << 30) + 1; |
|
|
|
int e2 = x.m_signexp - (1 << 30) + 1; |
|
|
|
int e1 = m_signexp - EXPONENT_BIAS; |
|
|
|
int e2 = x.m_signexp - EXPONENT_BIAS; |
|
|
|
|
|
|
|
int bigoff = (e1 - e2) / BIGIT_BITS; |
|
|
|
int off = e1 - e2 - bigoff * BIGIT_BITS; |
|
|
|
|
|
|
|
if (bigoff > BIGITS) |
|
|
|
if (bigoff > BIGIT_COUNT) |
|
|
|
return *this; |
|
|
|
|
|
|
|
ret.m_signexp = m_signexp; |
|
|
|
|
|
|
|
uint64_t carry = 0; |
|
|
|
for (int i = BIGITS; i--; ) |
|
|
|
for (int i = BIGIT_COUNT; i--; ) |
|
|
|
{ |
|
|
|
carry += m_mantissa[i]; |
|
|
|
if (i - bigoff >= 0) |
|
|
@@ -347,7 +347,7 @@ template<> real real::operator +(real const &x) const |
|
|
|
if (carry) |
|
|
|
{ |
|
|
|
carry--; |
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
uint32_t tmp = ret.m_mantissa[i]; |
|
|
|
ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1)) |
|
|
@@ -379,13 +379,13 @@ template<> real real::operator -(real const &x) const |
|
|
|
|
|
|
|
real ret; |
|
|
|
|
|
|
|
int e1 = m_signexp - (1 << 30) + 1; |
|
|
|
int e2 = x.m_signexp - (1 << 30) + 1; |
|
|
|
int e1 = m_signexp - EXPONENT_BIAS; |
|
|
|
int e2 = x.m_signexp - EXPONENT_BIAS; |
|
|
|
|
|
|
|
int bigoff = (e1 - e2) / BIGIT_BITS; |
|
|
|
int off = e1 - e2 - bigoff * BIGIT_BITS; |
|
|
|
|
|
|
|
if (bigoff > BIGITS) |
|
|
|
if (bigoff > BIGIT_COUNT) |
|
|
|
return *this; |
|
|
|
|
|
|
|
ret.m_signexp = m_signexp; |
|
|
@@ -394,16 +394,16 @@ template<> real real::operator -(real const &x) const |
|
|
|
int64_t carry = 0; |
|
|
|
for (int i = 0; i < bigoff; i++) |
|
|
|
{ |
|
|
|
carry -= x.m_mantissa[BIGITS - 1 - i]; |
|
|
|
carry -= x.m_mantissa[BIGIT_COUNT - 1 - i]; |
|
|
|
/* Emulates a signed shift */ |
|
|
|
carry >>= BIGIT_BITS; |
|
|
|
carry |= carry << BIGIT_BITS; |
|
|
|
} |
|
|
|
if (bigoff < BIGITS) |
|
|
|
carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1); |
|
|
|
if (bigoff < BIGIT_COUNT) |
|
|
|
carry -= x.m_mantissa[BIGIT_COUNT - 1 - bigoff] & (((int64_t)1 << off) - 1); |
|
|
|
carry /= (int64_t)1 << off; |
|
|
|
|
|
|
|
for (int i = BIGITS; i--; ) |
|
|
|
for (int i = BIGIT_COUNT; i--; ) |
|
|
|
{ |
|
|
|
carry += m_mantissa[i]; |
|
|
|
if (i - bigoff >= 0) |
|
|
@@ -427,7 +427,7 @@ template<> real real::operator -(real const &x) const |
|
|
|
/* How much do we need to shift the mantissa? FIXME: this could |
|
|
|
* be computed above */ |
|
|
|
off = 0; |
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
if (!ret.m_mantissa[i]) |
|
|
|
{ |
|
|
@@ -439,7 +439,7 @@ template<> real real::operator -(real const &x) const |
|
|
|
off++; |
|
|
|
break; |
|
|
|
} |
|
|
|
if (off == BIGITS * BIGIT_BITS) |
|
|
|
if (off == BIGIT_COUNT * BIGIT_BITS) |
|
|
|
ret.m_signexp &= 0x80000000u; |
|
|
|
else |
|
|
|
{ |
|
|
@@ -449,12 +449,12 @@ template<> real real::operator -(real const &x) const |
|
|
|
bigoff = off / BIGIT_BITS; |
|
|
|
off -= bigoff * BIGIT_BITS; |
|
|
|
|
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
uint32_t tmp = 0; |
|
|
|
if (i + bigoff < BIGITS) |
|
|
|
if (i + bigoff < BIGIT_COUNT) |
|
|
|
tmp |= ret.m_mantissa[i + bigoff] << off; |
|
|
|
if (off && i + bigoff + 1 < BIGITS) |
|
|
|
if (off && i + bigoff + 1 < BIGIT_COUNT) |
|
|
|
tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off); |
|
|
|
ret.m_mantissa[i] = tmp; |
|
|
|
} |
|
|
@@ -476,19 +476,19 @@ template<> real real::operator *(real const &x) const |
|
|
|
} |
|
|
|
|
|
|
|
ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u; |
|
|
|
int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1 |
|
|
|
+ (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1; |
|
|
|
int e = (m_signexp & 0x7fffffffu) - EXPONENT_BIAS |
|
|
|
+ (x.m_signexp & 0x7fffffffu) - EXPONENT_BIAS; |
|
|
|
|
|
|
|
/* Accumulate low order product; no need to store it, we just |
|
|
|
* want the carry value */ |
|
|
|
uint64_t carry = 0, hicarry = 0, prev; |
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
for (int j = 0; j < i + 1; j++) |
|
|
|
{ |
|
|
|
prev = carry; |
|
|
|
carry += (uint64_t)m_mantissa[BIGITS - 1 - j] |
|
|
|
* (uint64_t)x.m_mantissa[BIGITS - 1 + j - i]; |
|
|
|
carry += (uint64_t)m_mantissa[BIGIT_COUNT - 1 - j] |
|
|
|
* (uint64_t)x.m_mantissa[BIGIT_COUNT - 1 + j - i]; |
|
|
|
if (carry < prev) |
|
|
|
hicarry++; |
|
|
|
} |
|
|
@@ -497,22 +497,22 @@ template<> real real::operator *(real const &x) const |
|
|
|
hicarry >>= BIGIT_BITS; |
|
|
|
} |
|
|
|
|
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
for (int j = i + 1; j < BIGITS; j++) |
|
|
|
for (int j = i + 1; j < BIGIT_COUNT; j++) |
|
|
|
{ |
|
|
|
prev = carry; |
|
|
|
carry += (uint64_t)m_mantissa[BIGITS - 1 - j] |
|
|
|
carry += (uint64_t)m_mantissa[BIGIT_COUNT - 1 - j] |
|
|
|
* (uint64_t)x.m_mantissa[j - 1 - i]; |
|
|
|
if (carry < prev) |
|
|
|
hicarry++; |
|
|
|
} |
|
|
|
prev = carry; |
|
|
|
carry += m_mantissa[BIGITS - 1 - i]; |
|
|
|
carry += x.m_mantissa[BIGITS - 1 - i]; |
|
|
|
carry += m_mantissa[BIGIT_COUNT - 1 - i]; |
|
|
|
carry += x.m_mantissa[BIGIT_COUNT - 1 - i]; |
|
|
|
if (carry < prev) |
|
|
|
hicarry++; |
|
|
|
ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu; |
|
|
|
ret.m_mantissa[BIGIT_COUNT - 1 - i] = carry & 0xffffffffu; |
|
|
|
carry >>= BIGIT_BITS; |
|
|
|
carry |= hicarry << BIGIT_BITS; |
|
|
|
hicarry >>= BIGIT_BITS; |
|
|
@@ -522,7 +522,7 @@ template<> real real::operator *(real const &x) const |
|
|
|
if (carry) |
|
|
|
{ |
|
|
|
carry--; |
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
uint32_t tmp = (uint32_t)ret.m_mantissa[i]; |
|
|
|
ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1)) |
|
|
@@ -532,7 +532,7 @@ template<> real real::operator *(real const &x) const |
|
|
|
e++; |
|
|
|
} |
|
|
|
|
|
|
|
ret.m_signexp |= e + (1 << 30) - 1; |
|
|
|
ret.m_signexp |= e + EXPONENT_BIAS; |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
@@ -574,7 +574,7 @@ template<> bool real::operator ==(real const &x) const |
|
|
|
if (m_signexp != x.m_signexp) |
|
|
|
return false; |
|
|
|
|
|
|
|
return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0; |
|
|
|
return memcmp(m_mantissa, x.m_mantissa, BIGIT_COUNT * sizeof(uint32_t)) == 0; |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator !=(real const &x) const |
|
|
@@ -595,7 +595,7 @@ template<> bool real::operator <(real const &x) const |
|
|
|
if (m_signexp != x.m_signexp) |
|
|
|
return m_signexp < x.m_signexp; |
|
|
|
|
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
if (m_mantissa[i] != x.m_mantissa[i]) |
|
|
|
return m_mantissa[i] < x.m_mantissa[i]; |
|
|
|
|
|
|
@@ -620,7 +620,7 @@ template<> bool real::operator >(real const &x) const |
|
|
|
if (m_signexp != x.m_signexp) |
|
|
|
return m_signexp > x.m_signexp; |
|
|
|
|
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
for (int i = 0; i < BIGIT_COUNT; i++) |
|
|
|
if (m_mantissa[i] != x.m_mantissa[i]) |
|
|
|
return m_mantissa[i] > x.m_mantissa[i]; |
|
|
|
|
|
|
@@ -685,9 +685,9 @@ template<> real inverse(real const &x) |
|
|
|
exponent = -exponent + (v.x >> 23) - (u.x >> 23); |
|
|
|
ret.m_signexp |= (exponent - 1) & 0x7fffffffu; |
|
|
|
|
|
|
|
/* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for |
|
|
|
/* FIXME: 1+log2(BIGIT_COUNT) steps of Newton-Raphson seems to be enough for |
|
|
|
* convergence, but this hasn't been checked seriously. */ |
|
|
|
for (int i = 1; i <= real::BIGITS; i *= 2) |
|
|
|
for (int i = 1; i <= real::BIGIT_COUNT; i *= 2) |
|
|
|
ret = ret * (real::R_2() - ret * x); |
|
|
|
|
|
|
|
return ret; |
|
|
@@ -724,14 +724,15 @@ template<> real sqrt(real const &x) |
|
|
|
uint32_t sign = x.m_signexp & 0x80000000u; |
|
|
|
ret.m_signexp = sign; |
|
|
|
|
|
|
|
/* FIXME: these << 30 and << 29 should be use EXPONENT_BIAS instead */ |
|
|
|
uint32_t exponent = (x.m_signexp & 0x7fffffffu); |
|
|
|
exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2; |
|
|
|
exponent = exponent + (v.x >> 23) - (u.x >> 23); |
|
|
|
ret.m_signexp |= exponent & 0x7fffffffu; |
|
|
|
|
|
|
|
/* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for |
|
|
|
/* FIXME: 1+log2(BIGIT_COUNT) steps of Newton-Raphson seems to be enough for |
|
|
|
* convergence, but this hasn't been checked seriously. */ |
|
|
|
for (int i = 1; i <= real::BIGITS; i *= 2) |
|
|
|
for (int i = 1; i <= real::BIGIT_COUNT; i *= 2) |
|
|
|
{ |
|
|
|
ret = ret * (real::R_3() - ret * ret * x); |
|
|
|
ret.m_signexp--; |
|
|
@@ -762,13 +763,13 @@ template<> real cbrt(real const &x) |
|
|
|
uint32_t sign = x.m_signexp & 0x80000000u; |
|
|
|
ret.m_signexp = sign; |
|
|
|
|
|
|
|
int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1; |
|
|
|
int exponent = (x.m_signexp & 0x7fffffffu) - real::EXPONENT_BIAS; |
|
|
|
exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23); |
|
|
|
ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu; |
|
|
|
ret.m_signexp |= (exponent + real::EXPONENT_BIAS) & 0x7fffffffu; |
|
|
|
|
|
|
|
/* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for |
|
|
|
* convergence, but this hasn't been checked seriously. */ |
|
|
|
for (int i = 1; i <= real::BIGITS; i *= 2) |
|
|
|
/* FIXME: 1+log2(BIGIT_COUNT) steps of Newton-Raphson seems to be enough |
|
|
|
* for convergence, but this hasn't been checked seriously. */ |
|
|
|
for (int i = 1; i <= real::BIGIT_COUNT; i *= 2) |
|
|
|
{ |
|
|
|
static real third = inverse(real::R_3()); |
|
|
|
ret = third * (x / (ret * ret) + (ret / 2)); |
|
|
@@ -850,7 +851,7 @@ template<> real gamma(real const &x) |
|
|
|
* also be useful to sort the ck values by decreasing absolute value |
|
|
|
* and do the addition in this order. */ |
|
|
|
int a = (int)ceilf(logf(2) / logf(2 * F_PI) |
|
|
|
* real::BIGITS * real::BIGIT_BITS); |
|
|
|
* real::BIGIT_COUNT * real::BIGIT_BITS); |
|
|
|
|
|
|
|
real ret = sqrt(real::R_PI() * 2); |
|
|
|
real fact_k_1 = real::R_1(); |
|
|
@@ -945,8 +946,8 @@ template<> real log(real const &x) |
|
|
|
tmp.m_mantissa[0] = 0xffffffffu; |
|
|
|
return tmp; |
|
|
|
} |
|
|
|
tmp.m_signexp = (1 << 30) - 1; |
|
|
|
return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2() |
|
|
|
tmp.m_signexp = real::EXPONENT_BIAS; |
|
|
|
return (real)(int)(x.m_signexp - real::EXPONENT_BIAS) * real::R_LN2() |
|
|
|
+ fast_log(tmp); |
|
|
|
} |
|
|
|
|
|
|
@@ -960,8 +961,8 @@ template<> real log2(real const &x) |
|
|
|
tmp.m_mantissa[0] = 0xffffffffu; |
|
|
|
return tmp; |
|
|
|
} |
|
|
|
tmp.m_signexp = (1 << 30) - 1; |
|
|
|
return (real)(int)(x.m_signexp - (1 << 30) + 1) |
|
|
|
tmp.m_signexp = real::EXPONENT_BIAS; |
|
|
|
return (real)(int)(x.m_signexp - real::EXPONENT_BIAS) |
|
|
|
+ fast_log(tmp) * real::R_LOG2E(); |
|
|
|
} |
|
|
|
|
|
|
@@ -1063,7 +1064,7 @@ template<> real frexp(real const &x, int *exp) |
|
|
|
} |
|
|
|
|
|
|
|
real ret = x; |
|
|
|
int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1; |
|
|
|
int exponent = (ret.m_signexp & 0x7fffffffu) - real::EXPONENT_BIAS; |
|
|
|
*exp = exponent + 1; |
|
|
|
ret.m_signexp -= exponent + 1; |
|
|
|
return ret; |
|
|
@@ -1125,9 +1126,9 @@ template<> real floor(real const &x) |
|
|
|
return real::R_0(); |
|
|
|
|
|
|
|
real ret = x; |
|
|
|
int exponent = x.m_signexp - (1 << 30) + 1; |
|
|
|
int exponent = x.m_signexp - real::EXPONENT_BIAS; |
|
|
|
|
|
|
|
for (int i = 0; i < real::BIGITS; i++) |
|
|
|
for (int i = 0; i < real::BIGIT_COUNT; i++) |
|
|
|
{ |
|
|
|
if (exponent <= 0) |
|
|
|
ret.m_mantissa[i] = 0; |
|
|
@@ -1419,15 +1420,16 @@ template<> real atan2(real const &y, real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> void real::hexprint() const |
|
|
|
template<> void real::sxprintf(char *str) const; |
|
|
|
template<> void real::sprintf(char *str, int ndigits) const; |
|
|
|
|
|
|
|
template<> void real::xprint() const |
|
|
|
{ |
|
|
|
std::printf("%08x", m_signexp); |
|
|
|
for (int i = 0; i < BIGITS; i++) |
|
|
|
std::printf(" %08x", m_mantissa[i]); |
|
|
|
char buf[150]; /* 128 bigit digits + room for 0x1, the exponent, etc. */ |
|
|
|
real::sxprintf(buf); |
|
|
|
std::printf("%s", buf); |
|
|
|
} |
|
|
|
|
|
|
|
template<> void real::sprintf(char *str, int ndigits) const; |
|
|
|
|
|
|
|
template<> void real::print(int ndigits) const |
|
|
|
{ |
|
|
|
char *buf = new char[ndigits + 32 + 10]; |
|
|
@@ -1436,6 +1438,18 @@ template<> void real::print(int ndigits) const |
|
|
|
delete[] buf; |
|
|
|
} |
|
|
|
|
|
|
|
template<> void real::sxprintf(char *str) const |
|
|
|
{ |
|
|
|
if (m_signexp >> 31) |
|
|
|
*str++ = '-'; |
|
|
|
str += std::sprintf(str, "0x1."); |
|
|
|
for (int i = 0; i < BIGIT_COUNT; ++i) |
|
|
|
str += std::sprintf(str, "%08x", m_mantissa[i]); |
|
|
|
while (str[-1] == '0') |
|
|
|
*--str = '\0'; |
|
|
|
str += std::sprintf(str, "p%d", (m_signexp & 0x7fffffffu) - EXPONENT_BIAS); |
|
|
|
} |
|
|
|
|
|
|
|
template<> void real::sprintf(char *str, int ndigits) const |
|
|
|
{ |
|
|
|
real x = *this; |
|
|
@@ -1485,15 +1499,23 @@ template<> void real::sprintf(char *str, int ndigits) const |
|
|
|
static real load_min() |
|
|
|
{ |
|
|
|
real ret = 1; |
|
|
|
return ldexp(ret, 2 - (1 << 30)); |
|
|
|
return ldexp(ret, 1 - real::EXPONENT_BIAS); |
|
|
|
} |
|
|
|
|
|
|
|
static real load_max() |
|
|
|
{ |
|
|
|
/* FIXME: the last bits of the mantissa are not properly handled in this |
|
|
|
* code! So we fallback to a slow but exact method. */ |
|
|
|
#if 0 |
|
|
|
real ret = 1; |
|
|
|
/* FIXME: the last bits of the mantissa are not properly handled! */ |
|
|
|
ret = ldexp(ret, real::TOTAL_BITS - 1) - ret; |
|
|
|
return ldexp(ret, (1 << 30) - (real::TOTAL_BITS - 1)); |
|
|
|
return ldexp(ret, real::EXPONENT_BIAS + 2 - real::TOTAL_BITS); |
|
|
|
#endif |
|
|
|
/* Generates 0x1.ffff..ffffp1073741823 */ |
|
|
|
char str[150]; |
|
|
|
std::sprintf(str, "0x1.%llx%llx%llx%llx%llx%llx%llx%llxp%d", |
|
|
|
-1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, real::EXPONENT_BIAS); |
|
|
|
return real(str); |
|
|
|
} |
|
|
|
|
|
|
|
static real load_pi() |
|
|
|