Преглед на файлове

math: add a roots() method to find polynomial roots for degrees 1 and 2.

undefined
Sam Hocevar преди 10 години
родител
ревизия
1eb5f9f361
променени са 2 файла, в които са добавени 83 реда и са изтрити 0 реда
  1. +46
    -0
      src/lol/math/polynomial.h
  2. +37
    -0
      src/t/math/polynomial.cpp

+ 46
- 0
src/lol/math/polynomial.h Целия файл

@@ -103,6 +103,52 @@ struct polynomial
return ret;
}

array<T> roots() const
{
ASSERT(degree() >= 0, "roots() called on the null polynomial");

if (degree() == 0)
{
/* p(x) = a > 0 */
return array<T> {};
}
else if (degree() == 1)
{
/* p(x) = ax + b */
T const &a = m_coefficients[1];
T const &b = m_coefficients[0];
return array<T> { -b / a };
}
else if (degree() == 2)
{
/* p(x) = ax² + bx + c */
T const &a = m_coefficients[2];
T const &b = m_coefficients[1];
T const &c = m_coefficients[0];

T const k = b / (a + a);
T const delta = k * k - c / a;

if (delta < T(0))
{
return array<T> {};
}
else if (delta > T(0))
{
T const sqrt_delta = sqrt(delta);
return array<T> { -k - sqrt_delta, -k + sqrt_delta };
}
else
{
return array<T> { -k };
}
}

ASSERT(false, "roots() called on polynomial of degree %d > 2",
degree());
return array<T> {};
}

inline T operator[](ptrdiff_t n) const
{
if (n < 0 || n > degree())


+ 37
- 0
src/t/math/polynomial.cpp Целия файл

@@ -214,6 +214,43 @@ lolunit_declare_fixture(PolynomialTest)
lolunit_assert_equal(r[2], 1.f);
}

lolunit_declare_test(RootsDegree0)
{
/* p(x) = 42 */
polynomial<float> p { 42.f };
auto roots = p.roots();

lolunit_assert_equal(roots.Count(), 0);
}

lolunit_declare_test(RootsDegree1)
{
/* p(x) = -6 + 2x */
polynomial<float> p { -6.f, 2.f };
auto roots = p.roots();

lolunit_assert_equal(roots.Count(), 1);
lolunit_assert_equal(roots[0], 3.f);
}

lolunit_declare_test(RootsDegree2)
{
/* p(x) = 81 - 18x + x² */
polynomial<float> p { 81.f, -18.f, 1.f };
auto roots1 = p.roots();

lolunit_assert_equal(roots1.Count(), 1);
lolunit_assert_equal(roots1[0], 9.f);

/* p(x) = 42 - 20x + 2x² */
polynomial<float> q { 42.f, -20.f, 2.f };
auto roots2 = q.roots();

lolunit_assert_equal(roots2.Count(), 2);
lolunit_assert_equal(roots2[0], 3.f);
lolunit_assert_equal(roots2[1], 7.f);
}

lolunit_declare_test(Chebyshev)
{
polynomial<float> t0 = polynomial<float>::chebyshev(0);


Зареждане…
Отказ
Запис