Sfoglia il codice sorgente

core: implement real methods cbrt(), log2(), exp2(), and copysign().

legacy
Sam Hocevar sam 13 anni fa
parent
commit
2235e9c180
3 ha cambiato i file con 152 aggiunte e 57 eliminazioni
  1. +94
    -17
      src/real.cpp
  2. +25
    -11
      src/real.h
  3. +33
    -29
      test/unit/real.cpp

+ 94
- 17
src/real.cpp Vedi File

@@ -553,6 +553,43 @@ real sqrt(real const &x)
return ret * x;
}

real cbrt(real const &x)
{
/* if zero, return x */
if (!(x.m_signexp << 1))
return x;

/* Use the system's float inversion to approximate cbrt(x). First
* we construct a float in the [1..8[ range that has roughly the same
* mantissa as our real. Its exponent is 0, 1 or 2, depending on the
* value of x. The final exponent is 0 or 1 (special case). We use
* the final exponent and final mantissa to pre-fill the result. */
union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
v.x += ((x.m_signexp % 3) << 23);
v.x |= x.m_mantissa[0] >> 9;
v.f = powf(v.f, 0.33333333333333333f);

real ret;
ret.m_mantissa[0] = v.x << 9;

uint32_t sign = x.m_signexp & 0x80000000u;
ret.m_signexp = sign;

int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23);
ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu;

/* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
* convergence, but this hasn't been checked seriously. */
for (int i = 1; i <= real::BIGITS; i *= 2)
{
static real third = re(real::R_3);
ret = third * (x / (ret * ret) + (ret << 1));
}

return ret;
}

real fabs(real const &x)
{
real ret = x;
@@ -608,6 +645,40 @@ real log(real const &x)
return (real)(x.m_signexp - (1 << 30) + 1) * real::R_LN2 + fast_log(tmp);
}

real log2(real const &x)
{
/* Strategy for log2(x): see log(x). */
real tmp = x;
if (x.m_signexp >> 31 || x.m_signexp == 0)
{
tmp.m_signexp = 0xffffffffu;
tmp.m_mantissa[0] = 0xffffffffu;
return tmp;
}
tmp.m_signexp = (1 << 30) - 1;
return (real)(x.m_signexp - (1 << 30) + 1) + fast_log(tmp) * real::R_LOG2E;
}

static real fast_exp(real const &x)
{
/* This fast exp method is tuned to work on the [0..1] range and
* no effort whatsoever was made to improve convergence outside this
* domain of validity. */
real ret = real::R_1, fact = real::R_1, xn = x;

for (int i = 1; ; i++)
{
fact *= (real)i;
real newret = ret + xn / fact;
if (newret == ret)
break;
ret = newret;
xn *= x;
}

return ret;
}

real exp(real const &x)
{
/* Strategy for exp(x): the Taylor series does not converge very fast
@@ -628,22 +699,29 @@ real exp(real const &x)
*/
int e0 = x / real::R_LN2;
real x0 = x - (real)e0 * real::R_LN2;
real x1 = real::R_1, fact = real::R_1, xn = x0;

for (int i = 1; ; i++)
{
fact *= (real)i;
real newx1 = x1 + xn / fact;
if (newx1 == x1)
break;
x1 = newx1;
xn *= x0;
}
real x1 = fast_exp(x0);
x1.m_signexp += e0;
return x1;
}

real exp2(real const &x)
{
/* Strategy for exp2(x): see strategy in exp(). */
int e0 = x;
real x0 = x - (real)e0;
real x1 = fast_exp(x0 * real::R_LN2);
x1.m_signexp += e0;
return x1;
}

real copysign(real const &x, real const &y)
{
real ret = x;
ret.m_signexp &= 0x7fffffffu;
ret.m_signexp |= y.m_signexp & 0x80000000u;
return ret;
}

real floor(real const &x)
{
/* Strategy for floor(x):
@@ -928,7 +1006,6 @@ real atan(real const &x)

void real::print(int ndigits) const
{
real const r1 = 1, r10 = 10;
real x = *this;

if (x.m_signexp >> 31)
@@ -941,9 +1018,9 @@ void real::print(int ndigits) const
int exponent = 0;
if (x.m_signexp)
{
for (real div = r1, newdiv; true; div = newdiv)
for (real div = R_1, newdiv; true; div = newdiv)
{
newdiv = div * r10;
newdiv = div * R_10;
if (x < newdiv)
{
x /= div;
@@ -951,10 +1028,10 @@ void real::print(int ndigits) const
}
exponent++;
}
for (real mul = 1, newx; true; mul *= r10)
for (real mul = 1, newx; true; mul *= R_10)
{
newx = x * mul;
if (newx >= r1)
if (newx >= R_1)
{
x = newx;
break;
@@ -971,7 +1048,7 @@ void real::print(int ndigits) const
if (i == 0)
printf(".");
x -= real(digit);
x *= r10;
x *= R_10;
}

/* Print exponent information */


+ 25
- 11
src/real.h Vedi File

@@ -62,25 +62,39 @@ public:
bool operator !() const;
operator bool() const;

friend real fabs(real const &x);
/* Trigonometric functions */
friend real sin(real const &x);
friend real cos(real const &x);
friend real tan(real const &x);
friend real asin(real const &x);
friend real acos(real const &x);
friend real atan(real const &x);
/* FIXME: atan2 */

/* Hyperbolic functions */
/* FIXME: sinh cosh tanh */

/* Exponential and logarithmic functions */
friend real exp(real const &x);
friend real exp2(real const &x);
friend real log(real const &x);
friend real log2(real const &x);
/* FIXME: frexp ldexp log10 modf */

/* Power functions */
friend real re(real const &x);
friend real sqrt(real const &x);
friend real log(real const &x);
friend real exp(real const &x);
friend real cbrt(real const &x);
/* FIXME: pow */

friend real floor(real const &x);
/* Rounding, absolute value, remainder etc. */
friend real ceil(real const &x);
friend real copysign(real const &x, real const &y);
friend real floor(real const &x);
friend real fabs(real const &x);
friend real round(real const &x);
friend real fmod(real const &x, real const &y);

friend real sin(real const &x);
friend real cos(real const &x);
friend real tan(real const &x);
friend real asin(real const &x);
friend real acos(real const &x);
friend real atan(real const &x);

void print(int ndigits = 150) const;

static real const R_0;


+ 33
- 29
test/unit/real.cpp Vedi File

@@ -34,35 +34,39 @@ LOLUNIT_FIXTURE(RealTest)
LOLUNIT_ASSERT_EQUAL(a2, 2.0);
LOLUNIT_ASSERT_EQUAL(a10, 10.0);

double b0 = log(real::R_E);
LOLUNIT_ASSERT_EQUAL(b0, 1.0);

double b1 = exp(re(real::R_LOG2E));
LOLUNIT_ASSERT_EQUAL(b1, 2.0);

double b2 = exp(re(real::R_LOG10E));
LOLUNIT_ASSERT_EQUAL(b2, 10.0);

double b3 = exp(real::R_LN2);
LOLUNIT_ASSERT_EQUAL(b3, 2.0);

double b4 = exp(real::R_LN10);
LOLUNIT_ASSERT_EQUAL(b4, 10.0);

double b5 = sin(real::R_PI);
double b6 = cos(real::R_PI);
LOLUNIT_ASSERT_DOUBLES_EQUAL(b5, 0.0, 1e-100);
LOLUNIT_ASSERT_EQUAL(b6, -1.0);

double b7 = sin(real::R_PI_2);
double b8 = cos(real::R_PI_2);
LOLUNIT_ASSERT_EQUAL(b7, 1.0);
LOLUNIT_ASSERT_DOUBLES_EQUAL(b8, 0.0, 1e-100);

double b9 = sin(real::R_PI_4) * sin(real::R_PI_4);
double b10 = cos(real::R_PI_4) * cos(real::R_PI_4);
LOLUNIT_ASSERT_EQUAL(b9, 0.5);
LOLUNIT_ASSERT_EQUAL(b10, 0.5);
double b1 = log(real::R_E);
double b2 = log2(real::R_2);
LOLUNIT_ASSERT_EQUAL(b1, 1.0);
LOLUNIT_ASSERT_EQUAL(b2, 1.0);

double c1 = exp(re(real::R_LOG2E));
double c2 = log(exp2(real::R_LOG2E));
LOLUNIT_ASSERT_EQUAL(c1, 2.0);
LOLUNIT_ASSERT_EQUAL(c2, 1.0);

double d1 = exp(re(real::R_LOG10E));
LOLUNIT_ASSERT_EQUAL(d1, 10.0);

double e1 = exp(real::R_LN2);
LOLUNIT_ASSERT_EQUAL(e1, 2.0);

double f1 = exp(real::R_LN10);
LOLUNIT_ASSERT_EQUAL(f1, 10.0);

double g1 = sin(real::R_PI);
double g2 = cos(real::R_PI);
LOLUNIT_ASSERT_DOUBLES_EQUAL(g1, 0.0, 1e-100);
LOLUNIT_ASSERT_EQUAL(g2, -1.0);

double h1 = sin(real::R_PI_2);
double h2 = cos(real::R_PI_2);
LOLUNIT_ASSERT_EQUAL(h1, 1.0);
LOLUNIT_ASSERT_DOUBLES_EQUAL(h2, 0.0, 1e-100);

double i1 = sin(real::R_PI_4) * sin(real::R_PI_4);
double i2 = cos(real::R_PI_4) * cos(real::R_PI_4);
LOLUNIT_ASSERT_EQUAL(i1, 0.5);
LOLUNIT_ASSERT_EQUAL(i2, 0.5);
}

LOLUNIT_TEST(FloatToReal)


Caricamento…
Annulla
Salva