|
|
@@ -1165,8 +1165,8 @@ template<typename T> real_t<T> erf(real_t<T> const &x) |
|
|
|
{ |
|
|
|
/* Strategy for erf(x): |
|
|
|
* - if x<0, erf(x) = -erf(-x) |
|
|
|
* - if x>7, erf(x) = 1-erfc(x) |
|
|
|
* - if x<7, erf(x) = sum((-1)^n·x^(2n+1)/((2n+1)·n!))/sqrt(π/4) |
|
|
|
* - if x≥7, erf(x) = 1+exp(-x²)/(x·sqrt(π))·sum((-1)^n·(2n-1)!!/(2x²)^n |
|
|
|
* |
|
|
|
* FIXME: do not compute factorials at each iteration, accumulate |
|
|
|
* them instead (see fast_exp_sub). |
|
|
@@ -1177,39 +1177,53 @@ template<typename T> real_t<T> erf(real_t<T> const &x) |
|
|
|
if (x.is_negative()) |
|
|
|
return -erf(-x); |
|
|
|
|
|
|
|
// FIXME: this test is inefficient; the series below converges slowly for 1≤x≤7, |
|
|
|
// but on the other hand there are accuracy issues with the erfc() implementation |
|
|
|
// in that range. |
|
|
|
if (x > real_t<T>(7)) |
|
|
|
return real_t<T>::R_1() - erfc(x); |
|
|
|
|
|
|
|
auto sum = real_t<T>::R_0(); |
|
|
|
auto x2 = x * x; |
|
|
|
|
|
|
|
/* FIXME: this test is inefficient; the series converges slowly for x≥1 */ |
|
|
|
if (x < real_t<T>(7)) |
|
|
|
auto xn = x, xmul = x2; |
|
|
|
for (int n = 0;; ++n, xn *= xmul) |
|
|
|
{ |
|
|
|
auto xn = x, xmul = x2; |
|
|
|
for (int n = 0;; ++n, xn *= xmul) |
|
|
|
{ |
|
|
|
auto tmp = xn / (fast_fact<T>(n) * (2 * n + 1)); |
|
|
|
auto newsum = (n & 1) ? sum - tmp : sum + tmp; |
|
|
|
if (newsum == sum) |
|
|
|
break; |
|
|
|
sum = newsum; |
|
|
|
} |
|
|
|
return sum * real_t<T>::R_2_SQRTPI(); |
|
|
|
auto tmp = xn / (fast_fact<T>(n) * (2 * n + 1)); |
|
|
|
auto newsum = (n & 1) ? sum - tmp : sum + tmp; |
|
|
|
if (newsum == sum) |
|
|
|
break; |
|
|
|
sum = newsum; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
auto xn = real_t<T>::R_1(), xmul = inverse(x2 + x2); |
|
|
|
/* FIXME: this does not converge well! We need to stop at 30 |
|
|
|
* iterations and sacrifice some accuracy. */ |
|
|
|
for (int n = 0; n < 30; ++n, xn *= xmul) |
|
|
|
{ |
|
|
|
auto tmp = xn * fast_fact<T>(n * 2 - 1, 2); |
|
|
|
auto newsum = (n & 1) ? sum - tmp : sum + tmp; |
|
|
|
if (newsum == sum) |
|
|
|
break; |
|
|
|
sum = newsum; |
|
|
|
} |
|
|
|
|
|
|
|
return real_t<T>::R_1() - exp(-x2) / (x * sqrt(real_t<T>::R_PI())) * sum; |
|
|
|
return sum * real_t<T>::R_2_SQRTPI(); |
|
|
|
} |
|
|
|
|
|
|
|
template<typename T> real_t<T> erfc(real_t<T> const &x) |
|
|
|
{ |
|
|
|
// Strategy for erfc(x): |
|
|
|
// - if x<1, erfc(x) = 1-erf(x) |
|
|
|
// - if x≥1, erfc(x) = exp(-x²)/(x·sqrt(π))·sum((-1)^n·(2n-1)!!/(2x²)^n) |
|
|
|
if (x < real_t<T>::R_1()) |
|
|
|
return real_t<T>::R_1() - erf(x); |
|
|
|
|
|
|
|
auto sum = real_t<T>::R_0(); |
|
|
|
auto x2 = x * x; |
|
|
|
// XXX: The series does not converge, there is an optimal value around |
|
|
|
// ⌊x²+0.5⌋. If maximum accuracy cannot be reached, we must stop summing |
|
|
|
// when divergence is detected. |
|
|
|
auto prev = x2; |
|
|
|
auto xn = real_t<T>::R_1(), xmul = inverse(x2 + x2); |
|
|
|
for (int n = 0;; ++n, xn *= xmul) |
|
|
|
{ |
|
|
|
auto tmp = xn * fast_fact<T>(n * 2 - 1, 2); |
|
|
|
auto newsum = (n & 1) ? sum - tmp : sum + tmp; |
|
|
|
if (newsum == sum || tmp > prev) |
|
|
|
break; |
|
|
|
sum = newsum; |
|
|
|
prev = tmp; |
|
|
|
} |
|
|
|
|
|
|
|
return exp(-x2) / (x * sqrt(real_t<T>::R_PI())) * sum; |
|
|
|
} |
|
|
|
|
|
|
|
template<typename T> real_t<T> sinh(real_t<T> const &x) |
|
|
|