Bläddra i källkod

math: merge the box2 and box3 type declarations.

We now have a box_t<T,N> template class. Which means we can have
4-dimensional AABBs. Why? Because we can.
undefined
Sam Hocevar 9 år sedan
förälder
incheckning
2443d31a46
2 ändrade filer med 49 tillägg och 112 borttagningar
  1. +2
    -1
      src/lol/base/types.h
  2. +47
    -111
      src/lol/math/geometry.h

+ 2
- 1
src/lol/base/types.h Visa fil

@@ -27,7 +27,7 @@ typedef Real<16> real;
class half;

/*
* Forward declaration of vec_t, mat_t, cmplx_t, quat_t
* Forward declaration of vec_t, mat_t, cmplx_t, quat_t, etc.
*/

/* HACK: if this is declared int const, Visual Studio becomes unable
@@ -35,6 +35,7 @@ class half;
#define FULL_SWIZZLE (0)

template<typename T, int N, int SWIZZLE = FULL_SWIZZLE> struct vec_t;
template<typename T, int N> struct box_t;
template<typename T, int COLS, int ROWS> struct mat_t;
template<typename T> struct cmplx_t;
template<typename T> struct quat_t;


+ 47
- 111
src/lol/math/geometry.h Visa fil

@@ -67,176 +67,112 @@ protected:
};
typedef SafeEnum<DirectionBase> Direction;

//LOL_BOX_TYPEDEFS ------------------------------------------------------------
#define LOL_BOX_TYPEDEFS(tname, suffix) \
template <typename T> struct tname; \
typedef tname<float> suffix; \
typedef tname<double> d##suffix; \
typedef tname<int32_t> i##suffix; \
typedef tname<uint32_t> u##suffix;
/*
* Generic box type names
*/

LOL_BOX_TYPEDEFS(Box2, box2)
LOL_BOX_TYPEDEFS(Box3, box3)
#define _T(tleft, tright, suffix) \
typedef tleft float tright suffix; \
typedef tleft double tright d##suffix; \
typedef tleft int32_t tright i##suffix; \
typedef tleft uint32_t tright u##suffix;

#undef LOL_BOX_TYPEDEFS
/* Idiotic hack to put "," inside a macro argument */
#define _C ,

/*
* 2D boxes
*/
_T(box_t<, _C 2>, box2)
_T(box_t<, _C 3>, box3)
_T(box_t<, _C 4>, box4)

template <typename T> struct Box2
#undef _C
#undef _T

template<typename T, int N>
struct box_t
{
inline Box2()
: aa(T(0)),
bb(T(0))
inline box_t()
: aa(vec_t<T, N>(T(0))),
bb(vec_t<T, N>(T(0)))
{}

inline Box2(vec_t<T,2> const &a, vec_t<T,2> const &b)
inline box_t(vec_t<T,N> const &a, vec_t<T,N> const &b)
: aa(a),
bb(b)
{}

inline Box2(T const &ax, T const &ay, T const &bx, T const &by)
inline box_t(T const &ax, T const &ay, T const &bx, T const &by)
: aa(ax, ay),
bb(bx, by)
{}

Box2<T> operator +(vec_t<T,2> const &v) const
{
return Box2<T>(aa + v, bb + v);
}

Box2<T> &operator +=(vec_t<T,2> const &v)
{
return *this = *this + v;
}

Box2<T> operator -(vec_t<T,2> const &v) const
{
return Box2<T>(aa - v, bb - v);
}

Box2<T> &operator -=(vec_t<T,2> const &v)
{
return *this = *this - v;
}

Box2<T> operator *(vec_t<T,2> const &v) const
{
return Box2<T>(aa * v, bb * v);
}

Box2<T> &operator *=(vec_t<T,2> const &v)
{
return *this = *this * v;
}

Box2<T> operator *(T const &s) const
{
return Box2<T>(aa * s, bb * s);
}

Box2<T> &operator *=(T const &s)
{
return *this = *this * s;
}

bool operator ==(Box2<T> const &box) const
{
return aa == box.aa && bb == box.bb;
}

bool operator !=(Box2<T> const &box) const
{
return aa != box.aa || bb != box.bb;
}

inline vec_t<T,2> center() const { return (bb + aa) / 2; }

inline vec_t<T,2> extent() const { return bb - aa; }

vec_t<T,2> aa, bb;
};

/*
* 3D boxes
*/

template <typename T> struct Box3
{
inline Box3()
: aa(T(0)),
bb(T(0))
{}

inline Box3(vec_t<T,3> const &a, vec_t<T,3> const &b)
: aa(a),
bb(b)
{}

inline Box3(T const &ax, T const &ay, T const &az,
T const &bx, T const &by, T const &bz)
inline box_t(T const &ax, T const &ay, T const &az,
T const &bx, T const &by, T const &bz)
: aa(ax, ay, az),
bb(bx, by, bz)
{}

Box3<T> operator +(vec_t<T,3> const &v) const
box_t<T,N> operator +(vec_t<T,N> const &v) const
{
return Box3<T>(aa + v, bb + v);
return box_t<T,N>(aa + v, bb + v);
}

Box3<T> &operator +=(vec_t<T,3> const &v)
box_t<T,N> &operator +=(vec_t<T,N> const &v)
{
return *this = *this + v;
}

Box3<T> operator -(vec_t<T,3> const &v) const
box_t<T,N> operator -(vec_t<T,N> const &v) const
{
return Box3<T>(aa - v, bb - v);
return box_t<T,N>(aa - v, bb - v);
}

Box3<T> &operator -=(vec_t<T,3> const &v)
box_t<T,N> &operator -=(vec_t<T,N> const &v)
{
return *this = *this - v;
}

Box3<T> operator *(vec_t<T,3> const &v) const
box_t<T,N> operator *(vec_t<T,N> const &v) const
{
return Box3<T>(aa * v, bb * v);
return box_t<T,N>(aa * v, bb * v);
}

Box3<T> &operator *=(vec_t<T,3> const &v)
box_t<T,N> &operator *=(vec_t<T,N> const &v)
{
return *this = *this * v;
}

Box3<T> operator *(T const &s) const
box_t<T,N> operator *(T const &s) const
{
return Box3<T>(aa * s, bb * s);
return box_t<T,N>(aa * s, bb * s);
}

Box3<T> &operator *=(T const &s)
box_t<T,N> &operator *=(T const &s)
{
return *this = *this * s;
}

bool operator ==(Box3<T> const &box) const
bool operator ==(box_t<T,N> const &box) const
{
return aa == box.aa && bb == box.bb;
}

bool operator !=(Box3<T> const &box) const
bool operator !=(box_t<T,N> const &box) const
{
return aa != box.aa || bb != box.bb;
}

inline vec_t<T,3> center() const { return (bb + aa) / 2; }
inline vec_t<T,N> center() const { return (bb + aa) / 2; }

inline vec_t<T,3> extent() const { return bb - aa; }
inline vec_t<T,N> extent() const { return bb - aa; }

vec_t<T,3> aa, bb;
vec_t<T,N> aa, bb;
};

static_assert(sizeof(box2) == 16, "sizeof(box2) == 16");
static_assert(sizeof(box3) == 24, "sizeof(box3) == 24");
static_assert(sizeof(dbox2) == 32, "sizeof(dbox2) == 32");
static_assert(sizeof(dbox3) == 48, "sizeof(dbox3) == 48");

/*
* Helper geometry functions
*/


Laddar…
Avbryt
Spara