Browse Source

core: improve tan() accuracy by tweaking higher order Taylor coefficients.

legacy
Sam Hocevar sam 13 years ago
parent
commit
2489233a44
2 changed files with 53 additions and 36 deletions
  1. +39
    -32
      src/trig.cpp
  2. +14
    -4
      test/trig.cpp

+ 39
- 32
src/trig.cpp View File

@@ -43,45 +43,48 @@ static const double TWO_EXP_54 = 18014398509481984.0;
/** sin Taylor series coefficients. */
static const double SC[] =
{
-1.6449340668482264364724e-0, // pi^2/3!
+8.1174242528335364363700e-1, // pi^4/5!
-1.9075182412208421369647e-1, // pi^6/7!
+2.6147847817654800504653e-2, // pi^8/9!
-2.3460810354558236375089e-3, // pi^10/11!
+1.4842879303107100368487e-4, // pi^12/13!
-6.9758736616563804745344e-6, // pi^14/15!
+2.5312174041370276513517e-7, // pi^16/17!
-1.6449340668482264364724e-0, // π^2/3!
+8.1174242528335364363700e-1, // π^4/5!
-1.9075182412208421369647e-1, // π^6/7!
+2.6147847817654800504653e-2, // π^8/9!
-2.3460810354558236375089e-3, // π^10/11!
+1.4842879303107100368487e-4, // π^12/13!
-6.9758736616563804745344e-6, // π^14/15!
+2.5312174041370276513517e-7, // π^16/17!
};

/* Note: the last value should be -1.3878952462213772114468e-7 (ie.
* π^18/18!) but we tweak it in order to get the better average precision
* required for tan() computations when close to π/2+kπ values. */
static const double CC[] =
{
-4.9348022005446793094172e-0, // pi^2/2!
+4.0587121264167682181850e-0, // pi^4/4!
-1.3352627688545894958753e-0, // pi^6/6!
+2.3533063035889320454188e-1, // pi^8/8!
-2.5806891390014060012598e-2, // pi^10/10!
+1.9295743094039230479033e-3, // pi^12/12!
-1.0463810492484570711802e-4, // pi^14/14!
+4.3030695870329470072978e-6, // pi^16/16!
-4.9348022005446793094172e-0, // π^2/2!
+4.0587121264167682181850e-0, // π^4/4!
-1.3352627688545894958753e-0, // π^6/6!
+2.3533063035889320454188e-1, // π^8/8!
-2.5806891390014060012598e-2, // π^10/10!
+1.9295743094039230479033e-3, // π^12/12!
-1.0463810492484570711802e-4, // π^14/14!
+4.3030695870329470072978e-6, // π^16/16!
-1.3777e-7,
};

/* These coefficients use Sloane’s http://oeis.org/A002430 and
* http://oeis.org/A036279 sequences for the Taylor series of tan().
* Note: the last value should be 443861162*pi^18/1856156927625, ie.
* 2.12485922978838540352881e5, but we tweak it in order to get
* sub 1e-11 precision in a larger range. */
* Note: the last value should be 2.12485922978838540352881e5 (ie.
* 443861162*π^18/1856156927625), but we tweak it in order to get
* sub 1e-11 average precision in a larger range. */
static const double TC[] =
{
3.28986813369645287294483e0, // pi^2/3
1.29878788045336582981920e1, // 2*pi^4/15
5.18844961612069061254404e1, // 17*pi^6/315
2.07509320280908496804928e2, // 62*pi^8/2835
8.30024701695986756361561e2, // 1382*pi^10/155925
3.32009324029001216460018e3, // 21844*pi^12/6081075
1.32803704909665483598490e4, // 929569*pi^14/638512875
5.31214808666037709352112e4, // 6404582*pi^16/10854718875
2.373e5, // XXX: last value tweaked to improve precision
//2.12485922978838540352881e5, // 443861162*pi^18/1856156927625
3.28986813369645287294483e0, // π^2/3
1.29878788045336582981920e1, // 2*π^4/15
5.18844961612069061254404e1, // 17*π^6/315
2.07509320280908496804928e2, // 62*π^8/2835
8.30024701695986756361561e2, // 1382*π^10/155925
3.32009324029001216460018e3, // 21844*π^12/6081075
1.32803704909665483598490e4, // 929569*π^14/638512875
5.31214808666037709352112e4, // 6404582*π^16/10854718875
2.373e5,
};

/* Custom intrinsics */
@@ -343,7 +346,10 @@ void lol_sincos(double x, double *sinx, double *cosx)
double x2 = absx * absx;
double x4 = x2 * x2;

double subs1 = (SC[3] * x4 + SC[1]) * x4 + ONE;
/* Computing the Taylor series to the 11th order is enough to get
* x * 1e-11 precision, but we push it to the 13th order so that
* tan() has a better precision. */
double subs1 = ((SC[5] * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
double subs2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
double taylors = subs2 * x2 + subs1;
*sinx = x * taylors;
@@ -406,15 +412,16 @@ void lol_sincos(double x, double *sinx, double *cosx)
double x2 = absx * absx;
double x4 = x2 * x2;
#if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
double subs1 = (SC[3] * x4 + SC[1]) * x4 + ONE;
double subs1 = ((CC[5] * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
double subs2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
double subc1 = ((CC[5] * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
double subc2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
#else
double subs1 = (((SC[7] * x4 + SC[5]) * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
double subs2 = ((SC[6] * x4 + SC[4]) * x4 + SC[2]) * x4 + SC[0];
/* Push Taylor series to the 19th order to enhance tan() accuracy. */
double subc1 = (((CC[7] * x4 + CC[5]) * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
double subc2 = ((CC[6] * x4 + CC[4]) * x4 + CC[2]) * x4 + CC[0];
double subc2 = (((CC[8] * x4 + CC[6]) * x4 + CC[4]) * x4 + CC[2]) * x4 + CC[0];
#endif
double taylors = subs2 * x2 + subs1;
*sinx = absx * taylors * sin_sign;


+ 14
- 4
test/trig.cpp View File

@@ -93,12 +93,17 @@ public:
CPPUNIT_ASSERT(fabs(a2 - b2) <= fabs(f) * 1e-11);
}

for (int i = -10000; i < 10000; i++)
for (int i = -100000; i < 100000; i++)
{
double f = (double)i * (1.0 / 1000.0);
double f = (double)i * (1.0 / 10000.0);
double a = __builtin_tan(f);
double b = lol_tan(f);
CPPUNIT_ASSERT(fabs(a - b) <= fabs(a) * 1e-11);
if (fabs(a) > 1e4)
CPPUNIT_ASSERT(fabs(a - b) <= fabs(a) * fabs(a) * 1e-11);
else if (fabs(a) > 1.0)
CPPUNIT_ASSERT(fabs(a - b) <= fabs(a) * 1e-11);
else
CPPUNIT_ASSERT(fabs(a - b) <= fabs(f) * 1e-11);
}

for (int i = -10000; i < 10000; i++)
@@ -106,7 +111,12 @@ public:
double f = (double)i * (1.0 / 100000.0);
double a = __builtin_tan(f);
double b = lol_tan(f);
CPPUNIT_ASSERT(fabs(a - b) <= fabs(a) * 1e-11);
if (fabs(a) > 1e4)
CPPUNIT_ASSERT(fabs(a - b) <= fabs(a) * fabs(a) * 1e-11);
else if (fabs(a) > 1.0)
CPPUNIT_ASSERT(fabs(a - b) <= fabs(a) * 1e-11);
else
CPPUNIT_ASSERT(fabs(a - b) <= fabs(f) * 1e-11);
}
}
};


Loading…
Cancel
Save