|
|
@@ -10,24 +10,17 @@ |
|
|
|
// See http://www.wtfpl.net/ for more details. |
|
|
|
// |
|
|
|
|
|
|
|
#include <lol/engine-internal.h> |
|
|
|
|
|
|
|
#include <new> |
|
|
|
#include <string> |
|
|
|
#include <sstream> |
|
|
|
#include <iomanip> |
|
|
|
#include <cstring> |
|
|
|
#include <cstdlib> |
|
|
|
#include <cmath> |
|
|
|
|
|
|
|
namespace lol |
|
|
|
{ |
|
|
|
|
|
|
|
/* |
|
|
|
* First handle explicit specialisation of our templates. |
|
|
|
*/ |
|
|
|
|
|
|
|
template<> int real::DEFAULT_BIGIT_COUNT = 16; |
|
|
|
|
|
|
|
/* |
|
|
|
* Initialisation order is not important because everything is |
|
|
|
* done on demand, but here is the dependency list anyway: |
|
|
@@ -45,21 +38,21 @@ static real load_max(); |
|
|
|
static real load_pi(); |
|
|
|
|
|
|
|
/* These getters do not need caching, their return values are small */ |
|
|
|
template<> real const real::R_0() { return real(); } |
|
|
|
template<> real const real::R_INF() { real ret; ret.m_inf = true; return ret; } |
|
|
|
template<> real const real::R_NAN() { real ret; ret.m_nan = true; return ret; } |
|
|
|
template<> inline real const real::R_0() { return real(); } |
|
|
|
template<> inline real const real::R_INF() { real ret; ret.m_inf = true; return ret; } |
|
|
|
template<> inline real const real::R_NAN() { real ret; ret.m_nan = true; return ret; } |
|
|
|
|
|
|
|
#define LOL_CONSTANT_GETTER(name, value) \ |
|
|
|
template<> real const& real::name() \ |
|
|
|
template<> inline real const& real::name() \ |
|
|
|
{ \ |
|
|
|
static real ret; \ |
|
|
|
static int prev_bigit_count = -1; \ |
|
|
|
/* If the default bigit count has changed, we must recompute |
|
|
|
* the value with the desired precision. */ \ |
|
|
|
if (prev_bigit_count != DEFAULT_BIGIT_COUNT) \ |
|
|
|
if (prev_bigit_count != global_bigit_count()) \ |
|
|
|
{ \ |
|
|
|
ret = (value); \ |
|
|
|
prev_bigit_count = DEFAULT_BIGIT_COUNT; \ |
|
|
|
prev_bigit_count = global_bigit_count(); \ |
|
|
|
} \ |
|
|
|
return ret; \ |
|
|
|
} |
|
|
@@ -95,17 +88,17 @@ LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2); |
|
|
|
* Now carry on with the rest of the Real class. |
|
|
|
*/ |
|
|
|
|
|
|
|
template<> real::Real(int32_t i) { new(this) real((double)i); } |
|
|
|
template<> real::Real(uint32_t i) { new(this) real((double)i); } |
|
|
|
template<> real::Real(float f) { new(this) real((double)f); } |
|
|
|
template<> inline real::Real(int32_t i) { new(this) real((double)i); } |
|
|
|
template<> inline real::Real(uint32_t i) { new(this) real((double)i); } |
|
|
|
template<> inline real::Real(float f) { new(this) real((double)f); } |
|
|
|
|
|
|
|
template<> real::Real(int64_t i) |
|
|
|
template<> inline real::Real(int64_t i) |
|
|
|
{ |
|
|
|
new(this) real((uint64_t)lol::abs(i)); |
|
|
|
new(this) real((uint64_t)std::abs(i)); |
|
|
|
m_sign = i < 0; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::Real(uint64_t i) |
|
|
|
template<> inline real::Real(uint64_t i) |
|
|
|
{ |
|
|
|
new(this) real(); |
|
|
|
if (i) |
|
|
@@ -129,7 +122,7 @@ template<> real::Real(uint64_t i) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::Real(double d) |
|
|
|
template<> inline real::Real(double d) |
|
|
|
{ |
|
|
|
union { double d; uint64_t x; } u = { d }; |
|
|
|
|
|
|
@@ -156,7 +149,7 @@ template<> real::Real(double d) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::Real(long double f) |
|
|
|
template<> inline real::Real(long double f) |
|
|
|
{ |
|
|
|
/* We don’t know the long double layout, so we get rid of the |
|
|
|
* exponent, then load it into a real in two steps. */ |
|
|
@@ -167,11 +160,11 @@ template<> real::Real(long double f) |
|
|
|
m_exponent += exponent; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::operator float() const { return (float)(double)*this; } |
|
|
|
template<> real::operator int32_t() const { return (int32_t)(double)floor(*this); } |
|
|
|
template<> real::operator uint32_t() const { return (uint32_t)(double)floor(*this); } |
|
|
|
template<> inline real::operator float() const { return (float)(double)*this; } |
|
|
|
template<> inline real::operator int32_t() const { return (int32_t)(double)floor(*this); } |
|
|
|
template<> inline real::operator uint32_t() const { return (uint32_t)(double)floor(*this); } |
|
|
|
|
|
|
|
template<> real::operator uint64_t() const |
|
|
|
template<> inline real::operator uint64_t() const |
|
|
|
{ |
|
|
|
uint32_t msb = (uint32_t)ldexp(*this, -32); |
|
|
|
uint64_t ret = ((uint64_t)msb << 32) |
|
|
@@ -179,14 +172,14 @@ template<> real::operator uint64_t() const |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::operator int64_t() const |
|
|
|
template<> inline real::operator int64_t() const |
|
|
|
{ |
|
|
|
/* If number is positive, convert it to uint64_t first. If it is |
|
|
|
* negative, switch its sign first. */ |
|
|
|
return is_negative() ? -(int64_t)-*this : (int64_t)(uint64_t)*this; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::operator double() const |
|
|
|
template<> inline real::operator double() const |
|
|
|
{ |
|
|
|
union { double d; uint64_t x; } u; |
|
|
|
|
|
|
@@ -225,7 +218,7 @@ template<> real::operator double() const |
|
|
|
return u.d; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::operator long double() const |
|
|
|
template<> inline real::operator long double() const |
|
|
|
{ |
|
|
|
double hi = double(*this); |
|
|
|
double lo = double(*this - hi); |
|
|
@@ -235,7 +228,7 @@ template<> real::operator long double() const |
|
|
|
/* |
|
|
|
* Create a real number from an ASCII representation |
|
|
|
*/ |
|
|
|
template<> real::Real(char const *str) |
|
|
|
template<> inline real::Real(char const *str) |
|
|
|
{ |
|
|
|
real ret = 0; |
|
|
|
exponent_t exponent = 0; |
|
|
@@ -319,19 +312,19 @@ template<> real::Real(char const *str) |
|
|
|
*this = ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real real::operator +() const |
|
|
|
template<> inline real real::operator +() const |
|
|
|
{ |
|
|
|
return *this; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real real::operator -() const |
|
|
|
template<> inline real real::operator -() const |
|
|
|
{ |
|
|
|
real ret = *this; |
|
|
|
ret.m_sign ^= true; |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real real::operator +(real const &x) const |
|
|
|
template<> inline real real::operator +(real const &x) const |
|
|
|
{ |
|
|
|
if (x.is_zero()) |
|
|
|
return *this; |
|
|
@@ -399,7 +392,7 @@ template<> real real::operator +(real const &x) const |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real real::operator -(real const &x) const |
|
|
|
template<> inline real real::operator -(real const &x) const |
|
|
|
{ |
|
|
|
if (x.is_zero()) |
|
|
|
return *this; |
|
|
@@ -508,7 +501,7 @@ template<> real real::operator -(real const &x) const |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real real::operator *(real const &x) const |
|
|
|
template<> inline real real::operator *(real const &x) const |
|
|
|
{ |
|
|
|
real ret; |
|
|
|
|
|
|
@@ -579,36 +572,36 @@ template<> real real::operator *(real const &x) const |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real real::operator /(real const &x) const |
|
|
|
template<> inline real real::operator /(real const &x) const |
|
|
|
{ |
|
|
|
return *this * inverse(x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real const &real::operator +=(real const &x) |
|
|
|
template<> inline real const &real::operator +=(real const &x) |
|
|
|
{ |
|
|
|
real tmp = *this; |
|
|
|
return *this = tmp + x; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real const &real::operator -=(real const &x) |
|
|
|
template<> inline real const &real::operator -=(real const &x) |
|
|
|
{ |
|
|
|
real tmp = *this; |
|
|
|
return *this = tmp - x; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real const &real::operator *=(real const &x) |
|
|
|
template<> inline real const &real::operator *=(real const &x) |
|
|
|
{ |
|
|
|
real tmp = *this; |
|
|
|
return *this = tmp * x; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real const &real::operator /=(real const &x) |
|
|
|
template<> inline real const &real::operator /=(real const &x) |
|
|
|
{ |
|
|
|
real tmp = *this; |
|
|
|
return *this = tmp / x; |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator ==(real const &x) const |
|
|
|
template<> inline bool real::operator ==(real const &x) const |
|
|
|
{ |
|
|
|
/* If NaN is involved, return false */ |
|
|
|
if (is_nan() || x.is_nan()) |
|
|
@@ -622,12 +615,12 @@ template<> bool real::operator ==(real const &x) const |
|
|
|
return m_exponent == x.m_exponent && m_mantissa == x.m_mantissa; |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator !=(real const &x) const |
|
|
|
template<> inline bool real::operator !=(real const &x) const |
|
|
|
{ |
|
|
|
return !(is_nan() || x.is_nan() || *this == x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator <(real const &x) const |
|
|
|
template<> inline bool real::operator <(real const &x) const |
|
|
|
{ |
|
|
|
/* If NaN is involved, return false */ |
|
|
|
if (is_nan() || x.is_nan()) |
|
|
@@ -657,12 +650,12 @@ template<> bool real::operator <(real const &x) const |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator <=(real const &x) const |
|
|
|
template<> inline bool real::operator <=(real const &x) const |
|
|
|
{ |
|
|
|
return !(is_nan() || x.is_nan() || *this > x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator >(real const &x) const |
|
|
|
template<> inline bool real::operator >(real const &x) const |
|
|
|
{ |
|
|
|
/* If NaN is involved, return false */ |
|
|
|
if (is_nan() || x.is_nan()) |
|
|
@@ -696,38 +689,38 @@ template<> bool real::operator >(real const &x) const |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator >=(real const &x) const |
|
|
|
template<> inline bool real::operator >=(real const &x) const |
|
|
|
{ |
|
|
|
return !(is_nan() || x.is_nan() || *this < x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> bool real::operator !() const |
|
|
|
template<> inline bool real::operator !() const |
|
|
|
{ |
|
|
|
return !(bool)*this; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real::operator bool() const |
|
|
|
template<> inline real::operator bool() const |
|
|
|
{ |
|
|
|
/* A real is "true" if it is non-zero AND not NaN */ |
|
|
|
return !is_zero() && !is_nan(); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real min(real const &a, real const &b) |
|
|
|
template<> inline real min(real const &a, real const &b) |
|
|
|
{ |
|
|
|
return (a < b) ? a : b; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real max(real const &a, real const &b) |
|
|
|
template<> inline real max(real const &a, real const &b) |
|
|
|
{ |
|
|
|
return (a > b) ? a : b; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real clamp(real const &x, real const &a, real const &b) |
|
|
|
template<> inline real clamp(real const &x, real const &a, real const &b) |
|
|
|
{ |
|
|
|
return (x < a) ? a : (x > b) ? b : x; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real inverse(real const &x) |
|
|
|
template<> inline real inverse(real const &x) |
|
|
|
{ |
|
|
|
real ret; |
|
|
|
|
|
|
@@ -753,7 +746,7 @@ template<> real inverse(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real sqrt(real const &x) |
|
|
|
template<> inline real sqrt(real const &x) |
|
|
|
{ |
|
|
|
/* if zero, return x (FIXME: negative zero?) */ |
|
|
|
if (x.is_zero()) |
|
|
@@ -792,7 +785,7 @@ template<> real sqrt(real const &x) |
|
|
|
return ret * x; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real cbrt(real const &x) |
|
|
|
template<> inline real cbrt(real const &x) |
|
|
|
{ |
|
|
|
/* if zero, return x */ |
|
|
|
if (x.is_zero()) |
|
|
@@ -829,7 +822,7 @@ template<> real cbrt(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real pow(real const &x, real const &y) |
|
|
|
template<> inline real pow(real const &x, real const &y) |
|
|
|
{ |
|
|
|
/* Shortcuts for degenerate cases */ |
|
|
|
if (!y) |
|
|
@@ -908,14 +901,16 @@ static real fast_fact(int x, int step = 1) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template<> real gamma(real const &x) |
|
|
|
template<> inline real gamma(real const &x) |
|
|
|
{ |
|
|
|
static float pi = acosf(-1.f); |
|
|
|
|
|
|
|
/* We use Spouge’s formula. FIXME: precision is far from acceptable, |
|
|
|
* especially with large values. We need to compute this with higher |
|
|
|
* precision values in order to attain the desired accuracy. It might |
|
|
|
* also be useful to sort the ck values by decreasing absolute value |
|
|
|
* and do the addition in this order. */ |
|
|
|
int a = (int)ceilf(logf(2) / logf(2 * F_PI) * x.total_bits()); |
|
|
|
int a = (int)ceilf(logf(2) / logf(2 * pi) * x.total_bits()); |
|
|
|
|
|
|
|
real ret = sqrt(real::R_PI() * 2); |
|
|
|
real fact_k_1 = real::R_1(); |
|
|
@@ -935,24 +930,24 @@ template<> real gamma(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real fabs(real const &x) |
|
|
|
template<> inline real fabs(real const &x) |
|
|
|
{ |
|
|
|
real ret = x; |
|
|
|
ret.m_sign = false; |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real abs(real const &x) |
|
|
|
template<> inline real abs(real const &x) |
|
|
|
{ |
|
|
|
return fabs(x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real fract(real const &x) |
|
|
|
template<> inline real fract(real const &x) |
|
|
|
{ |
|
|
|
return x - floor(x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real degrees(real const &x) |
|
|
|
template<> inline real degrees(real const &x) |
|
|
|
{ |
|
|
|
/* FIXME: need to recompute this for different mantissa sizes */ |
|
|
|
static real mul = real(180) * real::R_1_PI(); |
|
|
@@ -960,7 +955,7 @@ template<> real degrees(real const &x) |
|
|
|
return x * mul; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real radians(real const &x) |
|
|
|
template<> inline real radians(real const &x) |
|
|
|
{ |
|
|
|
/* FIXME: need to recompute this for different mantissa sizes */ |
|
|
|
static real mul = real::R_PI() / real(180); |
|
|
@@ -1001,7 +996,7 @@ static real fast_log(real const &x) |
|
|
|
return z * sum * 4; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real log(real const &x) |
|
|
|
template<> inline real log(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M), |
|
|
|
* with the property that M is in [1..2[, so fast_log() applies here. */ |
|
|
@@ -1013,7 +1008,7 @@ template<> real log(real const &x) |
|
|
|
return real(x.m_exponent) * real::R_LN2() + fast_log(tmp); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real log2(real const &x) |
|
|
|
template<> inline real log2(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for log2(x): see log(x). */ |
|
|
|
if (x.is_negative() || x.is_zero()) |
|
|
@@ -1024,7 +1019,7 @@ template<> real log2(real const &x) |
|
|
|
return real(x.m_exponent) + fast_log(tmp) * real::R_LOG2E(); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real log10(real const &x) |
|
|
|
template<> inline real log10(real const &x) |
|
|
|
{ |
|
|
|
return log(x) * real::R_LOG10E(); |
|
|
|
} |
|
|
@@ -1050,7 +1045,7 @@ static real fast_exp_sub(real const &x, real const &y) |
|
|
|
return ret / fast_fact(i); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real exp(real const &x) |
|
|
|
template<> inline real exp(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for exp(x): the Taylor series does not converge very fast |
|
|
|
* with large positive or negative values. |
|
|
@@ -1075,7 +1070,7 @@ template<> real exp(real const &x) |
|
|
|
return x1; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real exp2(real const &x) |
|
|
|
template<> inline real exp2(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for exp2(x): see strategy in exp(). */ |
|
|
|
real::exponent_t e0 = x; |
|
|
@@ -1085,7 +1080,7 @@ template<> real exp2(real const &x) |
|
|
|
return x1; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real erf(real const &x) |
|
|
|
template<> inline real erf(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for erf(x): |
|
|
|
* - if x<0, erf(x) = -erf(-x) |
|
|
@@ -1136,7 +1131,7 @@ template<> real erf(real const &x) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template<> real sinh(real const &x) |
|
|
|
template<> inline real sinh(real const &x) |
|
|
|
{ |
|
|
|
/* We cannot always use (exp(x)-exp(-x))/2 because we'll lose |
|
|
|
* accuracy near zero. We only use this identity for |x|>0.5. If |
|
|
@@ -1147,7 +1142,7 @@ template<> real sinh(real const &x) |
|
|
|
return (x1 - x2) / 2; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real tanh(real const &x) |
|
|
|
template<> inline real tanh(real const &x) |
|
|
|
{ |
|
|
|
/* See sinh() for the strategy here */ |
|
|
|
bool near_zero = (fabs(x) < real::R_1() / 2); |
|
|
@@ -1157,14 +1152,14 @@ template<> real tanh(real const &x) |
|
|
|
return (x1 - x2) / x3; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real cosh(real const &x) |
|
|
|
template<> inline real cosh(real const &x) |
|
|
|
{ |
|
|
|
/* No need to worry about accuracy here; maybe the last bit is slightly |
|
|
|
* off, but that's about it. */ |
|
|
|
return (exp(x) + exp(-x)) / 2; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real frexp(real const &x, real::exponent_t *exp) |
|
|
|
template<> inline real frexp(real const &x, real::exponent_t *exp) |
|
|
|
{ |
|
|
|
if (!x) |
|
|
|
{ |
|
|
@@ -1180,7 +1175,7 @@ template<> real frexp(real const &x, real::exponent_t *exp) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real ldexp(real const &x, real::exponent_t exp) |
|
|
|
template<> inline real ldexp(real const &x, real::exponent_t exp) |
|
|
|
{ |
|
|
|
real ret = x; |
|
|
|
if (ret) /* Only do something if non-zero */ |
|
|
@@ -1188,7 +1183,7 @@ template<> real ldexp(real const &x, real::exponent_t exp) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real modf(real const &x, real *iptr) |
|
|
|
template<> inline real modf(real const &x, real *iptr) |
|
|
|
{ |
|
|
|
real absx = fabs(x); |
|
|
|
real tmp = floor(absx); |
|
|
@@ -1197,7 +1192,7 @@ template<> real modf(real const &x, real *iptr) |
|
|
|
return copysign(absx - tmp, x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real nextafter(real const &x, real const &y) |
|
|
|
template<> inline real nextafter(real const &x, real const &y) |
|
|
|
{ |
|
|
|
/* Linux manpage: “If x equals y, the functions return y.” */ |
|
|
|
if (x == y) |
|
|
@@ -1212,14 +1207,14 @@ template<> real nextafter(real const &x, real const &y) |
|
|
|
return x < y ? x + ulp : x - ulp; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real copysign(real const &x, real const &y) |
|
|
|
template<> inline real copysign(real const &x, real const &y) |
|
|
|
{ |
|
|
|
real ret = x; |
|
|
|
ret.m_sign = y.m_sign; |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real floor(real const &x) |
|
|
|
template<> inline real floor(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for floor(x): |
|
|
|
* - if negative, return -ceil(-x) |
|
|
@@ -1250,7 +1245,7 @@ template<> real floor(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real ceil(real const &x) |
|
|
|
template<> inline real ceil(real const &x) |
|
|
|
{ |
|
|
|
/* Strategy for ceil(x): |
|
|
|
* - if negative, return -floor(-x) |
|
|
@@ -1264,7 +1259,7 @@ template<> real ceil(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real round(real const &x) |
|
|
|
template<> inline real round(real const &x) |
|
|
|
{ |
|
|
|
if (x < real::R_0()) |
|
|
|
return -round(-x); |
|
|
@@ -1272,7 +1267,7 @@ template<> real round(real const &x) |
|
|
|
return floor(x + (real::R_1() / 2)); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real fmod(real const &x, real const &y) |
|
|
|
template<> inline real fmod(real const &x, real const &y) |
|
|
|
{ |
|
|
|
if (!y) |
|
|
|
return real::R_0(); /* FIXME: return NaN */ |
|
|
@@ -1284,7 +1279,7 @@ template<> real fmod(real const &x, real const &y) |
|
|
|
return x - tmp * y; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real sin(real const &x) |
|
|
|
template<> inline real sin(real const &x) |
|
|
|
{ |
|
|
|
bool switch_sign = x.is_negative(); |
|
|
|
|
|
|
@@ -1316,12 +1311,12 @@ template<> real sin(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real cos(real const &x) |
|
|
|
template<> inline real cos(real const &x) |
|
|
|
{ |
|
|
|
return sin(real::R_PI_2() - x); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real tan(real const &x) |
|
|
|
template<> inline real tan(real const &x) |
|
|
|
{ |
|
|
|
/* Constrain input to [-π,π] */ |
|
|
|
real y = fmod(x, real::R_PI()); |
|
|
@@ -1388,17 +1383,17 @@ static inline real asinacos(real const &x, int is_asin) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real asin(real const &x) |
|
|
|
template<> inline real asin(real const &x) |
|
|
|
{ |
|
|
|
return asinacos(x, 1); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real acos(real const &x) |
|
|
|
template<> inline real acos(real const &x) |
|
|
|
{ |
|
|
|
return asinacos(x, 0); |
|
|
|
} |
|
|
|
|
|
|
|
template<> real atan(real const &x) |
|
|
|
template<> inline real atan(real const &x) |
|
|
|
{ |
|
|
|
/* Computing atan(x): we choose a different Taylor series depending on |
|
|
|
* the value of x to help with convergence. |
|
|
@@ -1501,7 +1496,7 @@ template<> real atan(real const &x) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> real atan2(real const &y, real const &x) |
|
|
|
template<> inline real atan2(real const &y, real const &x) |
|
|
|
{ |
|
|
|
if (!y) |
|
|
|
{ |
|
|
@@ -1524,7 +1519,7 @@ template<> real atan2(real const &y, real const &x) |
|
|
|
} |
|
|
|
|
|
|
|
/* Franke’s function, used as a test for interpolation methods */ |
|
|
|
template<> real franke(real const &x, real const &y) |
|
|
|
template<> inline real franke(real const &x, real const &y) |
|
|
|
{ |
|
|
|
/* Compute 9x and 9y */ |
|
|
|
real nx = x + x; nx += nx; nx += nx + x; |
|
|
@@ -1547,7 +1542,7 @@ template<> real franke(real const &x, real const &y) |
|
|
|
} |
|
|
|
|
|
|
|
/* The Peaks example function from Matlab */ |
|
|
|
template<> real peaks(real const &x, real const &y) |
|
|
|
template<> inline real peaks(real const &x, real const &y) |
|
|
|
{ |
|
|
|
real x2 = x * x; |
|
|
|
real y2 = y * y; |
|
|
@@ -1562,7 +1557,7 @@ template<> real peaks(real const &x, real const &y) |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
template<> |
|
|
|
template<> inline |
|
|
|
std::ostream& operator <<(std::ostream &s, real const &x) |
|
|
|
{ |
|
|
|
bool hex = (s.flags() & std::ios_base::basefield) == std::ios_base::hex; |
|
|
@@ -1570,7 +1565,7 @@ std::ostream& operator <<(std::ostream &s, real const &x) |
|
|
|
return s; |
|
|
|
} |
|
|
|
|
|
|
|
template<> std::string real::str(int ndigits) const |
|
|
|
template<> inline std::string real::str(int ndigits) const |
|
|
|
{ |
|
|
|
std::stringstream ss; |
|
|
|
real x = *this; |
|
|
@@ -1625,12 +1620,12 @@ template<> std::string real::str(int ndigits) const |
|
|
|
|
|
|
|
// Print exponent information |
|
|
|
if (exponent) |
|
|
|
ss << 'e' << (exponent >= 0 ? '+' : '-') << lol::abs(exponent); |
|
|
|
ss << 'e' << (exponent >= 0 ? '+' : '-') << std::abs(exponent); |
|
|
|
|
|
|
|
return ss.str(); |
|
|
|
} |
|
|
|
|
|
|
|
template<> std::string real::xstr() const |
|
|
|
template<> inline std::string real::xstr() const |
|
|
|
{ |
|
|
|
std::stringstream ss; |
|
|
|
if (is_negative()) |
|
|
|