Просмотр исходного кода

test: check for NaN in LU decomposition results.

undefined
Sam Hocevar 10 лет назад
Родитель
Сommit
3d67ab7f23
1 измененных файлов: 133 добавлений и 123 удалений
  1. +133
    -123
      src/t/math/matrix.cpp

+ 133
- 123
src/t/math/matrix.cpp Просмотреть файл

@@ -63,199 +63,209 @@ lolunit_declare_fixture(MatrixTest)
lolunit_assert_doubles_equal(d2, -1.0f, 1e-5);
}

lolunit_declare_test(Multiplication)
lolunit_declare_test(multiplication_4x4)
{
mat4 m0(1.f);
mat4 m1(1.f);
mat4 m2 = m0 * m1;

lolunit_assert_equal(m2[0][0], 1.0f);
lolunit_assert_equal(m2[1][0], 0.0f);
lolunit_assert_equal(m2[2][0], 0.0f);
lolunit_assert_equal(m2[3][0], 0.0f);

lolunit_assert_equal(m2[0][1], 0.0f);
lolunit_assert_equal(m2[1][1], 1.0f);
lolunit_assert_equal(m2[2][1], 0.0f);
lolunit_assert_equal(m2[3][1], 0.0f);

lolunit_assert_equal(m2[0][2], 0.0f);
lolunit_assert_equal(m2[1][2], 0.0f);
lolunit_assert_equal(m2[2][2], 1.0f);
lolunit_assert_equal(m2[3][2], 0.0f);

lolunit_assert_equal(m2[0][3], 0.0f);
lolunit_assert_equal(m2[1][3], 0.0f);
lolunit_assert_equal(m2[2][3], 0.0f);
lolunit_assert_equal(m2[3][3], 1.0f);
for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat4(1.f)[i][j], 1e-5);
}

lolunit_declare_test(Inverse2x2)
lolunit_declare_test(inverse_2x2)
{
mat2 m0 = inv2;
mat2 m1 = inverse(m0);

mat2 m2 = m0 * m1;

lolunit_assert_equal(m2[0][0], 1.0f);
lolunit_assert_equal(m2[1][0], 0.0f);

lolunit_assert_equal(m2[0][1], 0.0f);
lolunit_assert_equal(m2[1][1], 1.0f);
for (int j = 0; j < 2; ++j)
for (int i = 0; i < 2; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat2(1.f)[i][j], 1e-5);
}

lolunit_declare_test(LUDecomposition3x3)
lolunit_declare_test(lu_decomposition_3x3)
{
mat3 m0 = inv3;

mat3 m(vec3(2, 3, 5),
vec3(3, 2, 3),
vec3(9, 5, 7));
mat3 L, U;
lu_decomposition(m, L, U);
mat3 m2 = L * U;

lu_decomposition(inv3, L, U);

mat3 result = L * U;

for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
if (i > j)
lolunit_assert_equal(L[i][j], 0);
else if (i < j)
lolunit_assert_equal(U[i][j], 0);
else
lolunit_assert_equal(L[i][j], 1);
lolunit_assert_equal(result[i][j], inv3[i][j]);
}
lolunit_assert(!isnan(U[i][j]));
lolunit_assert(!isnan(L[i][j]));
if (i < j)
lolunit_assert_doubles_equal(U[i][j], 0.f, 1e-5);
if (i == j)
lolunit_assert_doubles_equal(L[i][j], 1.f, 1e-5);
if (j < i)
lolunit_assert_doubles_equal(L[i][j], 0.f, 1e-5);
lolunit_assert_doubles_equal(m2[i][j], m[i][j], 1e-5);
}
}

lolunit_declare_test(LUDecomposition4x4)
lolunit_declare_test(lu_decomposition_4x4_full)
{
mat4 m0 = inv4;

mat4 m(vec4( 1, 1, 2, -1),
vec4(-2, -1, -2, 2),
vec4( 4, 2, 5, -4),
vec4( 5, -3, -7, -6));
mat4 L, U;
lu_decomposition(m, L, U);
mat4 m2 = L * U;

for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
{
lolunit_assert(!isnan(U[i][j]));
lolunit_assert(!isnan(L[i][j]));

lu_decomposition(inv4, L, U);
if (i < j)
lolunit_assert_doubles_equal(U[i][j], 0.f, 1e-5);
if (i == j)
lolunit_assert_doubles_equal(L[i][j], 1.f, 1e-5);
if (j < i)
lolunit_assert_doubles_equal(L[i][j], 0.f, 1e-5);

mat4 result = L * U;
lolunit_assert_doubles_equal(m2[i][j], m[i][j], 1e-5);
}
}

lolunit_declare_test(lu_decomposition_4x4_sparse)
{
mat4 m(vec4(1, 0, 0, 0),
vec4(0, 0, 1, 0),
vec4(0, -1, 0, 0),
vec4(0, 0, -1, 1));
mat4 L, U;
lu_decomposition(m, L, U);
mat4 m2 = L * U;

for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
if (i > j)
lolunit_assert_equal(L[i][j], 0);
else if (i < j)
lolunit_assert_equal(U[i][j], 0);
else
lolunit_assert_equal(L[i][j], 1);

lolunit_assert_equal(result[i][j], inv4[i][j]);
}
lolunit_assert(!isnan(U[i][j]));
lolunit_assert(!isnan(L[i][j]));
if (i < j)
lolunit_assert_doubles_equal(U[i][j], 0.f, 1e-5);
if (i == j)
lolunit_assert_doubles_equal(L[i][j], 1.f, 1e-5);
if (j < i)
lolunit_assert_doubles_equal(L[i][j], 0.f, 1e-5);
lolunit_assert_doubles_equal(m2[i][j], m[i][j], 1e-5);
}
}

lolunit_declare_test(LInverse3x3)
lolunit_declare_test(l_inverse_3x3)
{
mat3 m0 = inv3;
mat3 m(vec3(2, 3, 5),
vec3(3, 2, 3),
vec3(9, 5, 7));
mat3 L, U;
lu_decomposition(inv3, L, U);
mat3 l_inv = l_inverse(L);

mat3 identity = l_inv * L;
lu_decomposition(m, L, U);
mat3 m1 = l_inverse(L);
mat3 m2 = m1 * L;

for (int i = 0 ; i < 3 ; ++i)
for (int j = 0 ; j < 3 ; ++j)
lolunit_assert_doubles_equal(identity[i][j], i == j ? 1 : 0, 1e-5);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat3(1.f)[i][j], 1e-5);
}

lolunit_declare_test(LInverse4x4)
lolunit_declare_test(l_inverse_4x4)
{
mat4 m0 = inv4;
mat4 m(vec4( 1, 1, 2, -1),
vec4(-2, -1, -2, 2),
vec4( 4, 2, 5, -4),
vec4( 5, -3, -7, -6));
mat4 L, U;
lu_decomposition(inv4, L, U);
mat4 l_inv = l_inverse(L);

mat4 identity = l_inv * L;
lu_decomposition(m, L, U);
mat4 m1 = l_inverse(L);
mat4 m2 = m1 * L;

for (int i = 0 ; i < 4 ; ++i)
for (int j = 0 ; j < 4 ; ++j)
lolunit_assert_doubles_equal(identity[i][j], i == j ? 1 : 0, 1e-5);
for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat4(1.f)[i][j], 1e-5);
}

lolunit_declare_test(UInverse3x3)
lolunit_declare_test(u_inverse_3x3)
{
mat3 m0 = inv3;
mat3 m(vec3(2, 3, 5),
vec3(3, 2, 3),
vec3(9, 5, 7));
mat3 L, U;
lu_decomposition(inv3, L, U);
mat3 u_inv = u_inverse(U);
lu_decomposition(m, L, U);
mat3 m1 = u_inverse(U);
mat3 m2 = m1 * U;

mat3 identity = u_inv * U;

for (int i = 0 ; i < 3 ; ++i)
for (int j = 0 ; j < 3 ; ++j)
lolunit_assert_doubles_equal(identity[i][j], i == j ? 1 : 0, 1e-5);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat3(1.f)[i][j], 1e-5);
}

lolunit_declare_test(UInverse4x4)
lolunit_declare_test(u_inverse_4x4)
{
mat4 m0 = inv4;
mat4 m(vec4( 1, 1, 2, -1),
vec4(-2, -1, -2, 2),
vec4( 4, 2, 5, -4),
vec4( 5, -3, -7, -6));
mat4 L, U;
lu_decomposition(inv4, L, U);
mat4 u_inv = u_inverse(U);

mat4 identity = u_inv * U;
lu_decomposition(m, L, U);
mat4 m1 = u_inverse(U);
mat4 m2 = m1 * U;

for (int i = 0 ; i < 4 ; ++i)
for (int j = 0 ; j < 4 ; ++j)
lolunit_assert_doubles_equal(identity[i][j], i == j ? 1 : 0, 1e-5);
for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat4(1.f)[i][j], 1e-5);
}

lolunit_declare_test(Inverse3x3)
lolunit_declare_test(inverse_3x3)
{
mat3 m0 = inv3;
mat3 m1 = inverse(m0);
mat3 m(vec3(2, 3, 5),
vec3(3, 2, 3),
vec3(9, 5, 7));
mat3 m2 = inverse(m) * m;

mat3 m2 = m0 * m1;

lolunit_assert_doubles_equal(m2[0][0], 1.0f, 1e-4);
lolunit_assert_doubles_equal(m2[1][0], 0.0f, 1e-4);
lolunit_assert_doubles_equal(m2[2][0], 0.0f, 1e-4);

lolunit_assert_doubles_equal(m2[0][1], 0.0f, 1e-4);
lolunit_assert_doubles_equal(m2[1][1], 1.0f, 1e-4);
lolunit_assert_doubles_equal(m2[2][1], 0.0f, 1e-4);

lolunit_assert_doubles_equal(m2[0][2], 0.0f, 1e-4);
lolunit_assert_doubles_equal(m2[1][2], 0.0f, 1e-4);
lolunit_assert_doubles_equal(m2[2][2], 1.0f, 1e-4);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
lolunit_assert_doubles_equal(m2[i][j], mat3(1.f)[i][j], 1e-5);
}

lolunit_declare_test(inverse_4x4_1)
lolunit_declare_test(inverse_4x4_full)
{
mat4 m = inv4;
mat4 m(vec4( 1, 1, 2, -1),
vec4(-2, -1, -2, 2),
vec4( 4, 2, 5, -4),
vec4( 5, -3, -7, -6));
mat4 m2 = inverse(m) * m;

for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
lolunit_assert_equal(m2[i][j], mat4(1.f)[i][j]);
lolunit_assert_doubles_equal(m2[i][j], mat4(1.f)[i][j], 1e-5);
}

lolunit_declare_test(inverse_4x4_2)
lolunit_declare_test(inverse_4x4_sparse)
{
mat4 m(vec4(1.f, 0.f, 0.f, 0.f),
vec4(0.f, 0.f, 1.f, 0.f),
vec4(0.f, -1.f, 0.f, 0.f),
vec4(0.f, 0.f, -1.f, 1.f));
mat4 m(vec4(1, 0, 0, 0),
vec4(0, 0, 1, 0),
vec4(0, -1, 0, 0),
vec4(0, 0, -1, 1));
mat4 m2 = inverse(m) * m;

for (int j = 0; j < 4; ++j)
for (int i = 0; i < 4; ++i)
lolunit_assert_equal(m2[i][j], mat4(1.f)[i][j]);
lolunit_assert_doubles_equal(m2[i][j], mat4(1.f)[i][j], 1e-5);
}

lolunit_declare_test(Kronecker)
lolunit_declare_test(kronecker_product)
{
int const COLS1 = 2, ROWS1 = 3;
int const COLS2 = 5, ROWS2 = 7;


Загрузка…
Отмена
Сохранить