Pārlūkot izejas kodu

Add expm1() and log1p() for real numbers

wip/image-kernel
Sam Hocevar pirms 2 gadiem
vecāks
revīzija
45fbe2bdb3
2 mainītis faili ar 47 papildinājumiem un 13 dzēšanām
  1. +2
    -0
      include/lol/private/types/real.h
  2. +45
    -13
      include/lol/private/types/real.ipp

+ 2
- 0
include/lol/private/types/real.h Parādīt failu

@@ -120,10 +120,12 @@ public:
// Exponential and logarithmic functions
template<typename U> friend real_t<U> exp(real_t<U> const &x);
template<typename U> friend real_t<U> exp2(real_t<U> const &x);
template<typename U> friend real_t<U> expm1(real_t<U> const &x);
template<typename U> friend real_t<U> erf(real_t<U> const &x);
template<typename U> friend real_t<U> log(real_t<U> const &x);
template<typename U> friend real_t<U> log2(real_t<U> const &x);
template<typename U> friend real_t<U> log10(real_t<U> const &x);
template<typename U> friend real_t<U> log1p(real_t<U> const &x);

// Floating-point functions
template<typename U> friend real_t<U> frexp(real_t<U> const &x,


+ 45
- 13
include/lol/private/types/real.ipp Parādīt failu

@@ -1012,6 +1012,29 @@ template<typename T> int sign(real_t<T> const &x)
return x.is_zero() ? 0 : x.is_negative() ? -1 : 1;
}

template<typename T> real_t<T> fast_log_1p_1m(real_t<T> const &x)
{
// This is a fast implementation of ln(y) where y = (x + 1) / (x - 1):
// ln(y) = ln(1 + x) - ln(1 - x)
// = x - x²/2 + x³/3 - x⁴/4 … + x - x²/2 + x³/3 - x⁴/4 …
// = 2 (x + x³/3 + x⁵/5 …)
// = 2 x (1 + x²/3 + x⁴/5 + x⁶/7 …)
// Convergence is fast for values near 0.
auto x2 = x * x, xn = x2;
auto sum = real_t<T>::R_1();

for (int i = 3; ; i += 2)
{
auto newsum = sum + xn / real_t<T>(i);
if (newsum == sum)
break;
sum = newsum;
xn *= x2;
}

return x * sum * 2;
}

template<typename T> real_t<T> fast_log(real_t<T> const &x)
{
/* This fast log method is tuned to work on the [1..2] range and
@@ -1024,25 +1047,14 @@ template<typename T> real_t<T> fast_log(real_t<T> const &x)
* And the following identities:
* ln(x) = 2 ln(y)
* = 2 ln((1 + z) / (1 - z))
* = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
*
* Any additional sqrt() call would halve the convergence time, but
* would also impact the final precision. For now we stick with one
* sqrt() call. */
auto y = sqrt(x);
auto z = (y - real_t<T>::R_1()) / (y + real_t<T>::R_1()), z2 = z * z, zn = z2;
auto sum = real_t<T>::R_1();

for (int i = 3; ; i += 2)
{
auto newsum = sum + zn / real_t<T>(i);
if (newsum == sum)
break;
sum = newsum;
zn *= z2;
}
auto z = (y - real_t<T>::R_1()) / (y + real_t<T>::R_1());

return z * sum * 4;
return fast_log_1p_1m(z) * 2;
}

template<typename T> real_t<T> log(real_t<T> const &x)
@@ -1057,6 +1069,20 @@ template<typename T> real_t<T> log(real_t<T> const &x)
return real_t<T>(x.m_exponent) * real_t<T>::R_LN2() + fast_log(tmp);
}

template<typename T> real_t<T> log1p(real_t<T> const &x)
{
// Strategy for log1p(x): if |x| < 0.5 then we use the following
// variable substitution:
// y = x / (2 + x)
//
// And the following identity:
// ln(1 + x) = ln((1 + y) / ( 1 - y))
//
// Otherwise we just use standard log()
bool near_zero = (fabs(x) < real_t<T>::R_1() / 2);
return near_zero ? fast_log_1p_1m(x / (real_t<T>::R_2() + x)) : log(x) - real_t<T>::R_1();
}

template<typename T> real_t<T> log2(real_t<T> const &x)
{
/* Strategy for log2(x): see log(x). */
@@ -1129,6 +1155,12 @@ template<typename T> real_t<T> exp2(real_t<T> const &x)
return x1;
}

template<typename T> real_t<T> expm1(real_t<T> const &x)
{
bool near_zero = (fabs(x) < real_t<T>::R_1() / 2);
return near_zero ? fast_exp_sub(x, real_t<T>::R_1()) : exp(x) - real_t<T>::R_1();
}

template<typename T> real_t<T> erf(real_t<T> const &x)
{
/* Strategy for erf(x):


Notiek ielāde…
Atcelt
Saglabāt