|
@@ -607,6 +607,33 @@ real pow(real const &x, real const &y) |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
real gamma(real const &x) |
|
|
|
|
|
{ |
|
|
|
|
|
/* We use Spouge's formula. FIXME: precision is far from acceptable, |
|
|
|
|
|
* especially with large values. We need to compute this with higher |
|
|
|
|
|
* precision values in order to attain the desired accuracy. It might |
|
|
|
|
|
* also be useful to sort the ck values by decreasing absolute value |
|
|
|
|
|
* and do the addition in this order. */ |
|
|
|
|
|
int a = ceilf(logf(2) / logf(2 * M_PI) * real::BIGITS * real::BIGIT_BITS); |
|
|
|
|
|
|
|
|
|
|
|
real ret = sqrt(real::R_PI << 1); |
|
|
|
|
|
real fact_k_1 = real::R_1; |
|
|
|
|
|
|
|
|
|
|
|
for (int k = 1; k < a; k++) |
|
|
|
|
|
{ |
|
|
|
|
|
real a_k = (real)(a - k); |
|
|
|
|
|
real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k) |
|
|
|
|
|
/ (fact_k_1 * (x + (real)(k - 1))); |
|
|
|
|
|
ret += ck; |
|
|
|
|
|
fact_k_1 *= (real)-k; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
ret *= pow(x + (real)(a - 1), x - (real::R_1 >> 1)); |
|
|
|
|
|
ret *= exp(-x - (real)(a - 1)); |
|
|
|
|
|
|
|
|
|
|
|
return ret; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
real fabs(real const &x) |
|
|
real fabs(real const &x) |
|
|
{ |
|
|
{ |
|
|
real ret = x; |
|
|
real ret = x; |
|
|