Bladeren bron

simplex: replace the N-dimensional gradient array with a simple seed.

undefined
Sam Hocevar 10 jaren geleden
bovenliggende
commit
5065a2653c
2 gewijzigde bestanden met toevoegingen van 102 en 92 verwijderingen
  1. +19
    -33
      demos/test/simplex.cpp
  2. +83
    -59
      src/lol/math/simplex_interpolator.h

+ 19
- 33
demos/test/simplex.cpp Bestand weergeven

@@ -21,51 +21,37 @@ int main(int argc, char **argv)
{
UNUSED(argc, argv);

int const period = 10;
float const zoom = 0.02f;

/* Create some gradients */
array2d<vec2> gradients(vec_t<ptrdiff_t, 2>({period, period}));
for (int i = 0 ; i < period ; ++i)
for (int j = 0 ; j < period ; ++j)
gradients[i][j] = normalize(vec2(rand(-1.f, 1.f), rand(-1.f, 1.f)));
simplex_interpolator<2> s;
s.SetGradients(gradients);
float const zoom = 0.03f;
int const octaves = 10;

/* Create an image */
ivec2 const size(800, 600);
ivec2 const size(1280, 720);
Image img(size);
array2d<vec4> &data = img.Lock2D<PixelFormat::RGBA_F32>();

/* Fill image with simplex noise */
simplex_interpolator<2> s2;
simplex_interpolator<3> s3;
simplex_interpolator<4> s4;

for (int j = 0; j < size.y; ++j)
for (int i = 0; i < size.x; ++i)
{
float p = 0.5f * s.Interp(zoom * vec2(i, j));
#if 1
for (int k = 2; k < 128; k *= 2)
p += 0.5f / k * s.Interp(zoom * k * vec2(i, j));
//p += 0.5f / k * lol::abs(s.Interp(zoom * k * vec2(i, j)));
#endif
data[i][j] = vec4(saturate(0.5f + p), 0.f, 0.f, 1.f);
}
float sum = 0.f;
int maxoctave = (j < size.y / 2) ? 1 : (1 << octaves);

/* Mark simplex vertices */
vec2 diagonal = normalize(vec2(1.f));
vec2 dx = mat2::rotate(60.f) * diagonal;
vec2 dy = mat2::rotate(-60.f) * diagonal;
for (int j = -100; j < 100; ++j)
for (int i = -100; i < 100; ++i)
{
ivec2 coord = ivec2(i / zoom * dx + j / zoom * dy);
if (coord.x >= 0 && coord.x < size.x - 1
&& coord.y >= 0 && coord.y < size.y - 1)
for (int k = 1; k <= maxoctave; k *= 2)
{
data[coord.x][coord.y] = vec4(1.f, 0.f, 1.f, 1.f);
data[coord.x + 1][coord.y] = vec4(1.f, 0.f, 1.f, 1.f);
data[coord.x][coord.y + 1] = vec4(1.f, 0.f, 1.f, 1.f);
data[coord.x + 1][coord.y + 1] = vec4(1.f, 0.f, 1.f, 1.f);
if (i < size.x / 3)
sum += 0.5f / k * s2.Interp(zoom * k * vec2(i, j));
else if (i < size.x * 2 / 3)
sum += 0.5f / k * s3.Interp(zoom * k * vec3(i, j, 0.0f));
else
sum += 0.5f / k * s4.Interp(zoom * k * vec4(i, j, 0.0f, 0.0f));
}

float c = saturate(0.5f + sum);
data[i][j] = vec4(c, c, c, 1.f);
}

/* Save image */


+ 83
- 59
src/lol/math/simplex_interpolator.h Bestand weergeven

@@ -12,6 +12,8 @@

#pragma once

#include <functional>

namespace lol
{

@@ -19,21 +21,37 @@ template<int N>
class simplex_interpolator
{
public:

simplex_interpolator() :
m_gradients()
simplex_interpolator(int seed = 0)
: m_seed(seed)
{
this->InitBase();
}
/* Matrix coordinate transformation to skew simplex referential is done
* by inverting the base matrix M which is written as follows:
*
* M = | a b b b … | M^(-1) = | c d d d … |
* | b a b b … | | d c d d … |
* | b b a b … | | d d c d … |
* | … | | … |
*
* where a, b, c, d are computed below ↴
*/

inline void SetGradients(arraynd<N, vec_t<float, N> > const & gradients)
{
this->m_gradients = gradients;
}
float b = (1.f - lol::sqrt(N + 1.f)) / lol::sqrt((float)N * N * N);
float a = b + lol::sqrt((N + 1.f) / N);

inline arraynd<N, vec_t<float, N> > const & GetGradients() const
{
return this->m_gradients;
// determinant of matrix M
float det = a * (a + (N - 2) * b) - (b * b) * (N - 1);

float c = (a + (N - 2) * b) / det;
float d = -b / det;

for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
m_base[i][j] = (i == j ? a : b);
m_base_inverse[i][j] = (i == j ? c : d);
}
}
}

// Single interpolation
@@ -57,20 +75,19 @@ public:
}

protected:

inline float LastInterp(vec_t<int, N> origin,
vec_t<float, N> const & pos,
vec_t<int, N> const & index_order) const
{
// “corner” will traverse the simplex along its edges in
// orthonormal coordinates
/* “corner” will traverse the simplex along its edges in
* orthonormal coordinates. */
vec_t<float, N> corner(0);
float result = 0;

for (int i = 0; i < N + 1; ++i)
{
vec_t<float, N> const delta = pos - corner;
vec_t<float, N> const &gradient = this->m_gradients[origin];
vec_t<float, N> const &gradient = GetGradient(origin);

/* We use 4/3 because the maximum radius of influence for
* a given corner is sqrt(3/4). FIXME: check whether this
@@ -85,8 +102,7 @@ protected:
if (i < N)
{
corner += m_base[index_order[i]];
origin[index_order[i]] = this->Mod(origin[index_order[i]] + 1,
index_order[i]);
origin[index_order[i]] += 1;
}
}

@@ -104,6 +120,7 @@ protected:
for (int i = 0; i < N; ++i)
result[i] = i;

/* Naïve bubble sort — enough for now */
for (int i = 0; i < N; ++i)
for (int j = i + 1; j < N; ++j)
if (pos[result[i]] < pos[result[j]])
@@ -112,11 +129,53 @@ protected:
return result;
}

inline int Mod(int value, int index) const
inline vec_t<float, N> GetGradient(vec_t<int, N> origin) const
{
int const dim = this->m_gradients.GetSize()[index];
int const ret = value % dim;
return ret >= 0 ? ret : ret + dim;
/* Quick shuffle table:
* strings /dev/urandom | grep . -nm256 | sort -k2 -t: | sed 's|:.*|,|'
* Then just replace “256” with “0”. */
static int const shuffle[256] =
{
111, 14, 180, 186, 221, 114, 17, 79, 66, 46, 11, 81, 246, 200, 141,
172, 85, 244, 112, 92, 34, 106, 218, 205, 236, 7, 121, 115, 109,
131, 10, 96, 188, 148, 219, 107, 94, 182, 235, 163, 143, 213, 248,
202, 52, 154, 37, 241, 53, 129, 25, 60, 242, 38, 171, 63, 203, 255,
193, 6, 42, 209, 28, 176, 210, 159, 54, 144, 3, 71, 89, 116, 12,
237, 67, 216, 252, 178, 174, 164, 98, 234, 32, 26, 175, 24, 130,
128, 113, 99, 212, 62, 152, 75, 185, 73, 93, 31, 30, 151, 122, 173,
139, 91, 136, 162, 194, 208, 56, 101, 68, 69, 211, 44, 97, 55, 83,
33, 50, 119, 156, 149, 41, 157, 253, 247, 161, 47, 230, 166, 225,
204, 224, 13, 110, 123, 142, 64, 65, 155, 215, 120, 197, 140, 58,
77, 214, 126, 195, 179, 220, 232, 125, 147, 8, 39, 187, 27, 217,
100, 134, 199, 88, 206, 231, 250, 74, 2, 135, 9, 245, 118, 21, 243,
82, 183, 238, 87, 158, 61, 4, 177, 146, 153, 117, 249, 254, 233,
90, 222, 207, 48, 15, 18, 20, 239, 133, 0, 165, 138, 127, 169, 72,
1, 201, 145, 191, 192, 16, 49, 19, 95, 226, 228, 84, 181, 251, 36,
150, 22, 43, 70, 45, 105, 5, 189, 160, 196, 40, 59, 57, 190, 80,
104, 167, 78, 124, 103, 240, 184, 170, 137, 29, 23, 223, 108, 102,
86, 198, 227, 35, 229, 76, 168, 132, 51,
};

/* 16 random vectors; this should be enough for small dimensions */
auto v = [&]()
{
vec_t<float, N> ret;
for (int i = 0; i < N; ++i)
ret[i] = rand(-1.f, 1.f);
return normalize(ret);
};

static vec_t<float, N> const gradients[16] =
{
v(), v(), v(), v(), v(), v(), v(), v(),
v(), v(), v(), v(), v(), v(), v(), v(),
};

int idx = m_seed;
for (int i = 0; i < N; ++i)
idx = shuffle[(idx + origin[i]) & 255];

return gradients[(idx ^ (idx >> 4)) & 15];
}

/* For a given world position, extract grid coordinates (origin) and
@@ -131,46 +190,11 @@ protected:

// Extracting decimal part from simplex sample
pos = simplex_position - (vec_t<float, N>)origin;

// Never exceed the size of the gradients and loop on it
for (int i = 0; i < N; ++i)
origin[i] = this->Mod(origin[i], i);
}

inline void InitBase()
{
/* Matrix coordinate transformation to skew simplex referential is done
by inversing the base matrix M which is written as follows:

M = | a b b b … | M^(-1) = | c d d d … |
| b a b b … | | d c d d … |
| b b a b … | | d d c d … |
| … | | … |

where a, b, c, d are computed below ↴
*/

float b = (1.f - lol::sqrt(N + 1.f)) / lol::sqrt((float)N * N * N);
float a = b + lol::sqrt((N + 1.f) / N);

// determinant of matrix M
float det = a * (a + (N - 2) * b) - (b * b) * (N - 1);

float c = (a + (N - 2) * b) / det;
float d = -b / det;

for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
m_base[i][j] = (i == j ? a : b);
m_base_inverse[i][j] = (i == j ? c : d);
}
}
}

mat_t<float, N, N> m_base, m_base_inverse;
arraynd<N, vec_t<float, N> > m_gradients;
int m_seed;
};

}


Laden…
Annuleren
Opslaan