|
|
@@ -25,7 +25,7 @@ namespace lol |
|
|
|
{ |
|
|
|
|
|
|
|
/* |
|
|
|
* Return the determinant of a 2×2 matrix. |
|
|
|
* Return the determinant of a 2×2 matrix. |
|
|
|
*/ |
|
|
|
static inline float det2(float a, float b, |
|
|
|
float c, float d) |
|
|
@@ -34,7 +34,7 @@ static inline float det2(float a, float b, |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Return the determinant of a 3×3 matrix. |
|
|
|
* Return the determinant of a 3×3 matrix. |
|
|
|
*/ |
|
|
|
static inline float det3(float a, float b, float c, |
|
|
|
float d, float e, float f, |
|
|
@@ -46,7 +46,7 @@ static inline float det3(float a, float b, float c, |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Return the cofactor of the (i,j) entry in a 2×2 matrix. |
|
|
|
* Return the cofactor of the (i,j) entry in a 2×2 matrix. |
|
|
|
*/ |
|
|
|
static inline float cofact(mat2 const &mat, int i, int j) |
|
|
|
{ |
|
|
@@ -55,7 +55,7 @@ static inline float cofact(mat2 const &mat, int i, int j) |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Return the cofactor of the (i,j) entry in a 3×3 matrix. |
|
|
|
* Return the cofactor of the (i,j) entry in a 3×3 matrix. |
|
|
|
*/ |
|
|
|
static inline float cofact(mat3 const &mat, int i, int j) |
|
|
|
{ |
|
|
@@ -66,7 +66,7 @@ static inline float cofact(mat3 const &mat, int i, int j) |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Return the cofactor of the (i,j) entry in a 4×4 matrix. |
|
|
|
* Return the cofactor of the (i,j) entry in a 4×4 matrix. |
|
|
|
*/ |
|
|
|
static inline float cofact(mat4 const &mat, int i, int j) |
|
|
|
{ |
|
|
@@ -537,26 +537,18 @@ static inline vec3 quat_toeuler_generic(quat const &q, int i, int j, int k) |
|
|
|
if (!n) |
|
|
|
return vec3(0.f); |
|
|
|
|
|
|
|
vec3 v(q.x, q.y, q.z), ret; |
|
|
|
/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */ |
|
|
|
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f; |
|
|
|
|
|
|
|
vec3 ret; |
|
|
|
|
|
|
|
if (i != k) |
|
|
|
{ |
|
|
|
if ((2 + i - j) % 3) |
|
|
|
{ |
|
|
|
ret[0] = atan2(2.f * (q.w * v[i] - v[j] * v[k]), |
|
|
|
1.f - 2.f * (v[i] * v[i] + v[j] * v[j])); |
|
|
|
ret[1] = asin(2.f * (q.w * v[j] + v[i] * v[k])); |
|
|
|
ret[2] = atan2(2.f * (q.w * v[k] - v[j] * v[i]), |
|
|
|
1.f - 2.f * (v[k] * v[k] + v[j] * v[j])); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
ret[0] = atan2(2.f * (q.w * v[i] + v[j] * v[k]), |
|
|
|
1.f - 2.f * (v[i] * v[i] + v[j] * v[j])); |
|
|
|
ret[1] = asin(2.f * (q.w * v[j] - v[i] * v[k])); |
|
|
|
ret[2] = atan2(2.f * (q.w * v[k] + v[j] * v[i]), |
|
|
|
1.f - 2.f * (v[k] * v[k] + v[j] * v[j])); |
|
|
|
} |
|
|
|
ret[0] = atan2(2.f * (q.w * q[1 + i] - sign * (q[1 + j] * q[1 + k])), |
|
|
|
1.f - 2.f * (sq(q[1 + i]) + sq(q[1 + j]))); |
|
|
|
ret[1] = asin(2.f * (q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k]))); |
|
|
|
ret[2] = atan2(2.f * (q.w * q[1 + k] - sign * (q[1 + j] * q[1 + i])), |
|
|
|
1.f - 2.f * (sq(q[1 + k]) + sq(q[1 + j]))); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
@@ -570,65 +562,45 @@ static inline mat3 mat3_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
{ |
|
|
|
mat3 ret; |
|
|
|
|
|
|
|
vec3 radians = (F_PI / 180.0f) * v; |
|
|
|
float s0 = sin(radians[0]), c0 = cos(radians[0]); |
|
|
|
float s1 = sin(radians[1]), c1 = cos(radians[1]); |
|
|
|
float s2 = sin(radians[2]), c2 = cos(radians[2]); |
|
|
|
vec3 const radians = (F_PI / 180.0f) * v; |
|
|
|
float const s0 = sin(radians[0]), c0 = cos(radians[0]); |
|
|
|
float const s1 = sin(radians[1]), c1 = cos(radians[1]); |
|
|
|
float const s2 = sin(radians[2]), c2 = cos(radians[2]); |
|
|
|
|
|
|
|
/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */ |
|
|
|
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f; |
|
|
|
|
|
|
|
/* k == i means X-Y-X style Euler angles; otherwise we’re |
|
|
|
* actually handling X-Y-Z style Tait-Bryan angles. */ |
|
|
|
if (k == i) |
|
|
|
{ |
|
|
|
k = 3 - i - j; |
|
|
|
|
|
|
|
ret[i][i] = c1; |
|
|
|
ret[j][i] = s1 * s2; |
|
|
|
ret[i][j] = s0 * s1; |
|
|
|
ret[i][k] = - sign * (c0 * s1); |
|
|
|
|
|
|
|
ret[j][i] = s1 * s2; |
|
|
|
ret[j][j] = c0 * c2 - s0 * c1 * s2; |
|
|
|
ret[k][k] = - s0 * s2 + c0 * c1 * c2; |
|
|
|
ret[j][k] = sign * (s0 * c2 + c0 * c1 * s2); |
|
|
|
|
|
|
|
if ((2 + i - j) % 3) |
|
|
|
{ |
|
|
|
ret[k][i] = s1 * c2; |
|
|
|
ret[k][j] = - c0 * s2 - s0 * c1 * c2; |
|
|
|
ret[i][k] = - c0 * s1; |
|
|
|
ret[j][k] = s0 * c2 + c0 * c1 * s2; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
ret[k][i] = - s1 * c2; |
|
|
|
ret[k][j] = c0 * s2 + s0 * c1 * c2; |
|
|
|
ret[i][k] = c0 * s1; |
|
|
|
ret[j][k] = - s0 * c2 - c0 * c1 * s2; |
|
|
|
} |
|
|
|
ret[k][i] = sign * (s1 * c2); |
|
|
|
ret[k][j] = - sign * (c0 * s2 + s0 * c1 * c2); |
|
|
|
ret[k][k] = - s0 * s2 + c0 * c1 * c2; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
ret[i][i] = c1 * c2; |
|
|
|
ret[k][k] = c0 * c1; |
|
|
|
ret[i][j] = sign * (c0 * s2) + s0 * s1 * c2; |
|
|
|
ret[i][k] = s0 * s2 - sign * (c0 * s1 * c2); |
|
|
|
|
|
|
|
ret[j][i] = - sign * (c1 * s2); |
|
|
|
ret[j][j] = c0 * c2 - sign * (s0 * s1 * s2); |
|
|
|
ret[j][k] = sign * (s0 * c2) + c0 * s1 * s2; |
|
|
|
|
|
|
|
if ((2 + i - j) % 3) |
|
|
|
{ |
|
|
|
ret[j][i] = - c1 * s2; |
|
|
|
ret[k][i] = s1; |
|
|
|
|
|
|
|
ret[i][j] = c0 * s2 + s0 * s1 * c2; |
|
|
|
ret[j][j] = c0 * c2 - s0 * s1 * s2; |
|
|
|
ret[k][j] = - s0 * c1; |
|
|
|
|
|
|
|
ret[i][k] = s0 * s2 - c0 * s1 * c2; |
|
|
|
ret[j][k] = s0 * c2 + c0 * s1 * s2; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
ret[j][i] = c1 * s2; |
|
|
|
ret[k][i] = - s1; |
|
|
|
|
|
|
|
ret[i][j] = - c0 * s2 + s0 * s1 * c2; |
|
|
|
ret[j][j] = c0 * c2 + s0 * s1 * s2; |
|
|
|
ret[k][j] = s0 * c1; |
|
|
|
|
|
|
|
ret[i][k] = s0 * s2 + c0 * s1 * c2; |
|
|
|
ret[j][k] = - s0 * c2 + c0 * s1 * s2; |
|
|
|
} |
|
|
|
ret[k][i] = sign * s1; |
|
|
|
ret[k][j] = - sign * (s0 * c1); |
|
|
|
ret[k][k] = c0 * c1; |
|
|
|
} |
|
|
|
|
|
|
|
return ret; |
|
|
@@ -636,13 +608,18 @@ static inline mat3 mat3_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
|
|
|
|
static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
{ |
|
|
|
vec3 half_angles = (F_PI / 360.0f) * v; |
|
|
|
float s0 = sin(half_angles[0]), c0 = cos(half_angles[0]); |
|
|
|
float s1 = sin(half_angles[1]), c1 = cos(half_angles[1]); |
|
|
|
float s2 = sin(half_angles[2]), c2 = cos(half_angles[2]); |
|
|
|
vec3 const half_angles = (F_PI / 360.0f) * v; |
|
|
|
float const s0 = sin(half_angles[0]), c0 = cos(half_angles[0]); |
|
|
|
float const s1 = sin(half_angles[1]), c1 = cos(half_angles[1]); |
|
|
|
float const s2 = sin(half_angles[2]), c2 = cos(half_angles[2]); |
|
|
|
|
|
|
|
quat ret; |
|
|
|
|
|
|
|
/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */ |
|
|
|
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f; |
|
|
|
|
|
|
|
/* k == i means X-Y-X style Euler angles; otherwise we’re |
|
|
|
* actually handling X-Y-Z style Tait-Bryan angles. */ |
|
|
|
if (k == i) |
|
|
|
{ |
|
|
|
k = 3 - i - j; |
|
|
@@ -650,29 +627,23 @@ static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
ret[0] = c1 * (c0 * c2 - s0 * s2); |
|
|
|
ret[1 + i] = c1 * (c0 * s2 + s0 * c2); |
|
|
|
ret[1 + j] = s1 * (c0 * c2 + s0 * s2); |
|
|
|
ret[1 + k] = ((2 + i - j) % 3) ? s1 * (s0 * c2 - c0 * s2) |
|
|
|
: s1 * (c0 * s2 - s0 * c2); |
|
|
|
ret[1 + k] = sign * (s0 * c2 - c0 * s2); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
vec4 v1(c0 * c1 * c2, s0 * c1 * c2, c0 * s1 * c2, c0 * c1 * s2); |
|
|
|
vec4 v2(s0 * s1 * s2, -c0 * s1 * s2, s0 * c1 * s2, -s0 * s1 * c2); |
|
|
|
|
|
|
|
if ((2 + i - j) % 3) |
|
|
|
v1 -= v2; |
|
|
|
else |
|
|
|
v1 += v2; |
|
|
|
|
|
|
|
ret[0] = v1[0]; |
|
|
|
ret[1 + i] = v1[1]; |
|
|
|
ret[1 + j] = v1[2]; |
|
|
|
ret[1 + k] = v1[3]; |
|
|
|
ret[0] = v1[0] + sign * v2[0]; |
|
|
|
ret[1 + i] = v1[1] + sign * v2[1]; |
|
|
|
ret[1 + j] = v1[2] + sign * v2[2]; |
|
|
|
ret[1 + k] = v1[3] + sign * v2[3]; |
|
|
|
} |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
#define DEFINE_FROMEULER_GENERIC(name, i, j, k) \ |
|
|
|
#define DEFINE_GENERIC_EULER_CONVERSIONS(name, i, j, k) \ |
|
|
|
/* Create quaternions from Euler angles */ \ |
|
|
|
template<> quat quat::fromeuler_##name(vec3 const &v) \ |
|
|
|
{ \ |
|
|
@@ -684,7 +655,7 @@ static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
return quat::fromeuler_##name(vec3(phi, theta, psi)); \ |
|
|
|
} \ |
|
|
|
\ |
|
|
|
/* Create 3×3 matrices from Euler angles */ \ |
|
|
|
/* Create 3×3 matrices from Euler angles */ \ |
|
|
|
template<> mat3 mat3::fromeuler_##name(vec3 const &v) \ |
|
|
|
{ \ |
|
|
|
return mat3_fromeuler_generic(v, i, j, k); \ |
|
|
@@ -695,7 +666,7 @@ static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
return mat3::fromeuler_##name(vec3(phi, theta, psi)); \ |
|
|
|
} \ |
|
|
|
\ |
|
|
|
/* Create 4×4 matrices from Euler angles */ \ |
|
|
|
/* Create 4×4 matrices from Euler angles */ \ |
|
|
|
template<> mat4 mat4::fromeuler_##name(vec3 const &v) \ |
|
|
|
{ \ |
|
|
|
return mat4(mat3_fromeuler_generic(v, i, j, k), 1.f); \ |
|
|
@@ -712,21 +683,21 @@ static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k) |
|
|
|
return quat_toeuler_generic(q, i, j, k); \ |
|
|
|
} |
|
|
|
|
|
|
|
DEFINE_FROMEULER_GENERIC(xyx, 0, 1, 0) |
|
|
|
DEFINE_FROMEULER_GENERIC(xzx, 0, 2, 0) |
|
|
|
DEFINE_FROMEULER_GENERIC(yxy, 1, 0, 1) |
|
|
|
DEFINE_FROMEULER_GENERIC(yzy, 1, 2, 1) |
|
|
|
DEFINE_FROMEULER_GENERIC(zxz, 2, 0, 2) |
|
|
|
DEFINE_FROMEULER_GENERIC(zyz, 2, 1, 2) |
|
|
|
|
|
|
|
DEFINE_FROMEULER_GENERIC(xyz, 0, 1, 2) |
|
|
|
DEFINE_FROMEULER_GENERIC(xzy, 0, 2, 1) |
|
|
|
DEFINE_FROMEULER_GENERIC(yxz, 1, 0, 2) |
|
|
|
DEFINE_FROMEULER_GENERIC(yzx, 1, 2, 0) |
|
|
|
DEFINE_FROMEULER_GENERIC(zxy, 2, 0, 1) |
|
|
|
DEFINE_FROMEULER_GENERIC(zyx, 2, 1, 0) |
|
|
|
|
|
|
|
#undef DEFINE_FROMEULER_GENERIC |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(xyx, 0, 1, 0) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(xzx, 0, 2, 0) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(yxy, 1, 0, 1) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(yzy, 1, 2, 1) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(zxz, 2, 0, 2) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(zyz, 2, 1, 2) |
|
|
|
|
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(xyz, 0, 1, 2) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(xzy, 0, 2, 1) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(yxz, 1, 0, 2) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(yzx, 1, 2, 0) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(zxy, 2, 0, 1) |
|
|
|
DEFINE_GENERIC_EULER_CONVERSIONS(zyx, 2, 1, 0) |
|
|
|
|
|
|
|
#undef DEFINE_GENERIC_EULER_CONVERSIONS |
|
|
|
|
|
|
|
template<> mat4 mat4::lookat(vec3 eye, vec3 center, vec3 up) |
|
|
|
{ |
|
|
|