Browse Source

math: improve slerp implementation.

legacy
Sam Hocevar sam 12 years ago
parent
commit
5c5abfa53c
2 changed files with 23 additions and 28 deletions
  1. +4
    -2
      src/lol/math/vector.h
  2. +19
    -26
      src/math/vector.cpp

+ 4
- 2
src/lol/math/vector.h View File

@@ -934,7 +934,6 @@ template <typename T> struct Quat


static Quat<T> rotate(T angle, T x, T y, T z); static Quat<T> rotate(T angle, T x, T y, T z);
static Quat<T> rotate(T angle, Vec3<T> const &v); static Quat<T> rotate(T angle, Vec3<T> const &v);
static Quat<T> slerp(Quat<T> QuatA,Quat<T> QuatB, float const &Scalar);


/* Convert from Euler angles. The axes in fromeuler_xyx are /* Convert from Euler angles. The axes in fromeuler_xyx are
* x, then y', then x", ie. the axes are attached to the model. * x, then y', then x", ie. the axes are attached to the model.
@@ -1019,11 +1018,14 @@ static inline Quat<T> operator /(T x, Quat<T> const &y)
} }


template<typename T> template<typename T>
static inline Quat<T> operator /(Quat<T> x, Quat<T> const &y)
static inline Quat<T> operator /(Quat<T> const &x, Quat<T> const &y)
{ {
return x * re(y); return x * re(y);
} }


template<typename T>
extern Quat<T> slerp(Quat<T> const &qa, Quat<T> const &qb, T f);

/* /*
* Common operators for all vector types, including quaternions * Common operators for all vector types, including quaternions
*/ */


+ 19
- 26
src/math/vector.cpp View File

@@ -486,32 +486,25 @@ template<> quat quat::rotate(float angle, float x, float y, float z)
return quat::rotate(angle, vec3(x, y, z)); return quat::rotate(angle, vec3(x, y, z));
} }


template<> quat quat::slerp(quat QuatA, quat QuatB, float const &Scalar)
{
float magnitude = lol::sqrt(sqlength(QuatA) * sqlength(QuatB));
//btAssert(magnitude > btScalar(0));

float product = lol::dot(QuatA,QuatB) / magnitude;
if (product > -1.0f && product < 1.0f)
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const float sign = (product < 0.0f) ? -1.0f : 1.0f;

const float theta = lol::acos(sign * product);
const float s1 = lol::sin(sign * Scalar * theta);
const float d = 1.0f / lol::sin(theta);
const float s0 = lol::sin((1.0f - Scalar) * theta);

return quat(
(QuatA.w * s0 + QuatB.w * s1) * d,
(QuatA.x * s0 + QuatB.x * s1) * d,
(QuatA.y * s0 + QuatB.y * s1) * d,
(QuatA.z * s0 + QuatB.z * s1) * d);
}
else
{
return QuatA;
}
template<> quat slerp(quat const &qa, quat const &qb, float f)
{
float const magnitude = lol::sqrt(sqlength(qa) * sqlength(qb));
float const product = lol::dot(qa, qb) / magnitude;

/* If quaternions are equal or opposite, there is no need
* to slerp anything, just return qa. */
if (std::abs(product) >= 1.0f)
return qa;

float const sign = (product < 0.0f) ? -1.0f : 1.0f;
float const theta = lol::acos(sign * product);
float const s1 = lol::sin(sign * f * theta);
float const s0 = lol::sin((1.0f - f) * theta);

/* This is the same as 1/sin(theta) */
float const d = 1.0f / lol::sqrt(1.f - product * product);

return qa * (s0 * d) + qb * (s1 * d);
} }


template<> vec3 vec3::toeuler(quat const &q) template<> vec3 vec3::toeuler(quat const &q)


Loading…
Cancel
Save