| @@ -159,47 +159,47 @@ struct polynomial | |||||
| T const &c = m_coefficients[1]; | T const &c = m_coefficients[1]; | ||||
| T const &d = m_coefficients[0]; | T const &d = m_coefficients[0]; | ||||
| /* Using x = (X - k) so that p2(X) = p(X - k) = aX³ + 0×X² + mX + n */ | |||||
| /* Find k, m and n such that: | |||||
| * q(x) = p(x - k) / a = x³ + amx + n */ | |||||
| T const k = b / (T(3) * a); | T const k = b / (T(3) * a); | ||||
| T const m = c - b * k; | T const m = c - b * k; | ||||
| T const n = (T(2) / T(3) * b * k - c) * k + d; | |||||
| T const n = ((T(2) / T(3) * b * k - c) * k + d) / a; | |||||
| /* Assuming X = u + v and 3uv = -m, then | |||||
| * p2(u + v) = a(u + v) + n | |||||
| /* Assuming x = u + v and 3uv = -m, then | |||||
| * q(u + v) = a(u + v) + n | |||||
| * | * | ||||
| * We then need to solve the following system: | * We then need to solve the following system: | ||||
| * u³v³ = -m³/27 | * u³v³ = -m³/27 | ||||
| * u³ + v³ = -n/a | |||||
| * u³ + v³ = -n | |||||
| * | * | ||||
| * which gives : | * which gives : | ||||
| * u³ - v³ = √((n/a)² + 4m³/27) | |||||
| * u³ + v³ = -n/a | |||||
| * u³ - v³ = √(n² + 4m³/27) | |||||
| * u³ + v³ = -n | |||||
| * | * | ||||
| * u³ = (-n/a + √((n/a)² + 4m³/27))/2 | |||||
| * v³ = (-n/a - √((n/a)² + 4m³/27))/2 | |||||
| * u³ = (-n + √(n² + 4m³/27)) / 2 | |||||
| * v³ = (-n - √(n² + 4m³/27)) / 2 | |||||
| */ | */ | ||||
| T const delta = (n * n) / (a * a) + T(4) * m * m * m / T(27); | |||||
| T const delta = n * n + T(4) / T(27) * m * m * m; | |||||
| /* Because 3×u×v = -m and m is not complex | |||||
| /* Because 3uv = -m and m is not complex | |||||
| * angle(u³) + angle(v³) must equal 0. | * angle(u³) + angle(v³) must equal 0. | ||||
| * | * | ||||
| * This is why we compute u³ and v³ by norm and angle separately | * This is why we compute u³ and v³ by norm and angle separately | ||||
| * instead of using a std::complex class | |||||
| */ | |||||
| * instead of using a std::complex class */ | |||||
| T u3_norm, u3_angle; | T u3_norm, u3_angle; | ||||
| T v3_norm, v3_angle; | T v3_norm, v3_angle; | ||||
| if (delta < 0) | if (delta < 0) | ||||
| { | { | ||||
| v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / T(2); | |||||
| v3_norm = u3_norm = sqrt(n * n + abs(delta)) / T(2); | |||||
| u3_angle = atan2(sqrt(abs(delta)), -n/a); | |||||
| u3_angle = atan2(sqrt(abs(delta)), -n); | |||||
| v3_angle = -u3_angle; | v3_angle = -u3_angle; | ||||
| } | } | ||||
| else | else | ||||
| { | { | ||||
| u3_norm = (-n/a + sqrt(delta)) / T(2); | |||||
| v3_norm = (-n/a - sqrt(delta)) / T(2); | |||||
| u3_norm = (-n + sqrt(delta)) / T(2); | |||||
| v3_norm = (-n - sqrt(delta)) / T(2); | |||||
| u3_angle = u3_norm >= 0 ? 0 : pi; | u3_angle = u3_norm >= 0 ? 0 : pi; | ||||
| v3_angle = v3_norm >= 0 ? 0 : -pi; | v3_angle = v3_norm >= 0 ? 0 : -pi; | ||||
| @@ -210,14 +210,13 @@ struct polynomial | |||||
| T solutions[3]; | T solutions[3]; | ||||
| for (int i = 0 ; i < 3 ; ++i) | |||||
| for (int i : { 0, 1, 2 }) | |||||
| { | { | ||||
| T u_angle = (u3_angle + i * T(2) * pi) / T(3); | |||||
| T v_angle = (v3_angle - i * T(2) * pi) / T(3); | |||||
| T u_angle = (u3_angle + T(2 * i) * pi) / T(3); | |||||
| T v_angle = (v3_angle - T(2 * i) * pi) / T(3); | |||||
| solutions[i] = | |||||
| pow(u3_norm, T(1) / T(3)) * cos(u_angle) + | |||||
| pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||||
| solutions[i] = pow(u3_norm, T(1) / T(3)) * cos(u_angle) | |||||
| + pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||||
| } | } | ||||
| if (delta < 0) // 3 real solutions | if (delta < 0) // 3 real solutions | ||||