Browse Source

math: move code from vector.cpp to matrix.cpp and transform.cpp.

undefined
Sam Hocevar 10 years ago
parent
commit
62f7068516
6 changed files with 669 additions and 622 deletions
  1. +2
    -2
      src/Makefile.am
  2. +2
    -0
      src/lolcore.vcxproj
  3. +6
    -0
      src/lolcore.vcxproj.filters
  4. +346
    -0
      src/math/matrix.cpp
  5. +313
    -0
      src/math/transform.cpp
  6. +0
    -620
      src/math/vector.cpp

+ 2
- 2
src/Makefile.am View File

@@ -85,8 +85,8 @@ liblolcore_sources = \
base/assert.cpp base/hash.cpp base/log.cpp base/string.cpp \ base/assert.cpp base/hash.cpp base/log.cpp base/string.cpp \
base/enum.cpp \ base/enum.cpp \
\ \
math/vector.cpp math/real.cpp math/half.cpp math/trig.cpp \
math/constants.cpp math/geometry.cpp \
math/vector.cpp math/matrix.cpp math/transform.cpp math/trig.cpp \
math/constants.cpp math/geometry.cpp math/real.cpp math/half.cpp \
\ \
gpu/shader.cpp gpu/indexbuffer.cpp gpu/vertexbuffer.cpp \ gpu/shader.cpp gpu/indexbuffer.cpp gpu/vertexbuffer.cpp \
gpu/framebuffer.cpp gpu/texture.cpp gpu/renderer.cpp \ gpu/framebuffer.cpp gpu/texture.cpp gpu/renderer.cpp \


+ 2
- 0
src/lolcore.vcxproj View File

@@ -173,7 +173,9 @@
<ClCompile Include="math\constants.cpp" /> <ClCompile Include="math\constants.cpp" />
<ClCompile Include="math\geometry.cpp" /> <ClCompile Include="math\geometry.cpp" />
<ClCompile Include="math\half.cpp" /> <ClCompile Include="math\half.cpp" />
<ClCompile Include="math\matrix.cpp" />
<ClCompile Include="math\real.cpp" /> <ClCompile Include="math\real.cpp" />
<ClCompile Include="math\transform.cpp" />
<ClCompile Include="math\trig.cpp" /> <ClCompile Include="math\trig.cpp" />
<ClCompile Include="math\vector.cpp" /> <ClCompile Include="math\vector.cpp" />
<ClCompile Include="mesh\mesh.cpp" /> <ClCompile Include="mesh\mesh.cpp" />


+ 6
- 0
src/lolcore.vcxproj.filters View File

@@ -120,9 +120,15 @@
<ClCompile Include="math\half.cpp"> <ClCompile Include="math\half.cpp">
<Filter>math</Filter> <Filter>math</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="math\matrix.cpp">
<Filter>math</Filter>
</ClCompile>
<ClCompile Include="math\real.cpp"> <ClCompile Include="math\real.cpp">
<Filter>math</Filter> <Filter>math</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="math\transform.cpp">
<Filter>math</Filter>
</ClCompile>
<ClCompile Include="math\trig.cpp"> <ClCompile Include="math\trig.cpp">
<Filter>math</Filter> <Filter>math</Filter>
</ClCompile> </ClCompile>


+ 346
- 0
src/math/matrix.cpp View File

@@ -0,0 +1,346 @@
//
// Lol Engine
//
// Copyright: (c) 2010-2014 Sam Hocevar <sam@hocevar.net>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the Do What The Fuck You Want To
// Public License, Version 2, as published by Sam Hocevar. See
// http://www.wtfpl.net/ for more details.
//

#if defined HAVE_CONFIG_H
# include "config.h"
#endif

#include <lol/main.h>

namespace lol
{

/*
* Return the determinant of a 2×2 matrix.
*/
static inline float det2(float a, float b,
float c, float d)
{
return a * d - b * c;
}

/*
* Return the determinant of a 3×3 matrix.
*/
static inline float det3(float a, float b, float c,
float d, float e, float f,
float g, float h, float i)
{
return a * (e * i - h * f)
+ b * (f * g - i * d)
+ c * (d * h - g * e);
}

/*
* Return the cofactor of the (i,j) entry in a 2×2 matrix.
*/
static inline float cofact(mat2 const &m, int i, int j)
{
float tmp = m[(i + 1) & 1][(j + 1) & 1];
return ((i + j) & 1) ? -tmp : tmp;
}

/*
* Return the cofactor of the (i,j) entry in a 3×3 matrix.
*/
static inline float cofact(mat3 const &m, int i, int j)
{
return det2(m[(i + 1) % 3][(j + 1) % 3],
m[(i + 2) % 3][(j + 1) % 3],
m[(i + 1) % 3][(j + 2) % 3],
m[(i + 2) % 3][(j + 2) % 3]);
}

/*
* Return the cofactor of the (i,j) entry in a 4×4 matrix.
*/
static inline float cofact(mat4 const &m, int i, int j)
{
return det3(m[(i + 1) & 3][(j + 1) & 3],
m[(i + 2) & 3][(j + 1) & 3],
m[(i + 3) & 3][(j + 1) & 3],
m[(i + 1) & 3][(j + 2) & 3],
m[(i + 2) & 3][(j + 2) & 3],
m[(i + 3) & 3][(j + 2) & 3],
m[(i + 1) & 3][(j + 3) & 3],
m[(i + 2) & 3][(j + 3) & 3],
m[(i + 3) & 3][(j + 3) & 3]) * (((i + j) & 1) ? -1.0f : 1.0f);
}

template<> float determinant(mat2 const &m)
{
return det2(m[0][0], m[0][1],
m[1][0], m[1][1]);
}

template<> mat2 inverse(mat2 const &m)
{
mat2 ret;
float d = determinant(m);
if (d)
{
d = 1.0f / d;
for (int j = 0; j < 2; j++)
for (int i = 0; i < 2; i++)
ret[j][i] = cofact(m, i, j) * d;
}
return ret;
}

template<> float determinant(mat3 const &m)
{
return det3(m[0][0], m[0][1], m[0][2],
m[1][0], m[1][1], m[1][2],
m[2][0], m[2][1], m[2][2]);
}

template<> mat3 inverse(mat3 const &m)
{
mat3 ret;
float d = determinant(m);
if (d)
{
d = 1.0f / d;
for (int j = 0; j < 3; j++)
for (int i = 0; i < 3; i++)
ret[j][i] = cofact(m, i, j) * d;
}
return ret;
}

template<> float determinant(mat4 const &m)
{
float ret = 0;
for (int n = 0; n < 4; n++)
ret += m[n][0] * cofact(m, n, 0);
return ret;
}

template<> mat4 inverse(mat4 const &m)
{
mat4 ret;
float d = determinant(m);
if (d)
{
d = 1.0f / d;
for (int j = 0; j < 4; j++)
for (int i = 0; i < 4; i++)
ret[j][i] = cofact(m, i, j) * d;
}
return ret;
}

template<> mat3 mat3::scale(float x)
{
mat3 ret(1.0f);

ret[0][0] = x;
ret[1][1] = x;
ret[2][2] = x;

return ret;
}

template<> mat3 mat3::scale(float x, float y, float z)
{
mat3 ret(1.0f);

ret[0][0] = x;
ret[1][1] = y;
ret[2][2] = z;

return ret;
}

template<> mat3 mat3::scale(vec3 v)
{
return scale(v.x, v.y, v.z);
}

template<> mat4 mat4::translate(float x, float y, float z)
{
mat4 ret(1.0f);
ret[3][0] = x;
ret[3][1] = y;
ret[3][2] = z;
return ret;
}

template<> mat4 mat4::translate(vec3 v)
{
return translate(v.x, v.y, v.z);
}

template<> mat2 mat2::rotate(float degrees)
{
float st = sin(radians(degrees));
float ct = cos(radians(degrees));

mat2 ret;

ret[0][0] = ct;
ret[0][1] = st;

ret[1][0] = -st;
ret[1][1] = ct;

return ret;
}

template<> mat3 mat3::rotate(float degrees, float x, float y, float z)
{
float st = sin(radians(degrees));
float ct = cos(radians(degrees));

float len = std::sqrt(x * x + y * y + z * z);
float invlen = len ? 1.0f / len : 0.0f;
x *= invlen;
y *= invlen;
z *= invlen;

float mtx = (1.0f - ct) * x;
float mty = (1.0f - ct) * y;
float mtz = (1.0f - ct) * z;

mat3 ret;

ret[0][0] = x * mtx + ct;
ret[0][1] = x * mty + st * z;
ret[0][2] = x * mtz - st * y;

ret[1][0] = y * mtx - st * z;
ret[1][1] = y * mty + ct;
ret[1][2] = y * mtz + st * x;

ret[2][0] = z * mtx + st * y;
ret[2][1] = z * mty - st * x;
ret[2][2] = z * mtz + ct;

return ret;
}

template<> mat3 mat3::rotate(float degrees, vec3 v)
{
return rotate(degrees, v.x, v.y, v.z);
}

template<> mat3::mat_t(quat const &q)
{
float n = norm(q);

if (!n)
{
for (int j = 0; j < 3; j++)
for (int i = 0; i < 3; i++)
(*this)[i][j] = (i == j) ? 1.f : 0.f;
return;
}

float s = 2.0f / n;

(*this)[0][0] = 1.0f - s * (q.y * q.y + q.z * q.z);
(*this)[0][1] = s * (q.x * q.y + q.z * q.w);
(*this)[0][2] = s * (q.x * q.z - q.y * q.w);

(*this)[1][0] = s * (q.x * q.y - q.z * q.w);
(*this)[1][1] = 1.0f - s * (q.z * q.z + q.x * q.x);
(*this)[1][2] = s * (q.y * q.z + q.x * q.w);

(*this)[2][0] = s * (q.x * q.z + q.y * q.w);
(*this)[2][1] = s * (q.y * q.z - q.x * q.w);
(*this)[2][2] = 1.0f - s * (q.x * q.x + q.y * q.y);
}

template<> mat4::mat_t(quat const &q)
{
*this = mat4(mat3(q), 1.f);
}

template<> mat4 mat4::lookat(vec3 eye, vec3 center, vec3 up)
{
vec3 v3 = normalize(eye - center);
vec3 v1 = normalize(cross(up, v3));
vec3 v2 = cross(v3, v1);

return mat4(vec4(v1.x, v2.x, v3.x, 0.f),
vec4(v1.y, v2.y, v3.y, 0.f),
vec4(v1.z, v2.z, v3.z, 0.f),
vec4(-dot(eye, v1), -dot(eye, v2), -dot(eye, v3), 1.f));
}

template<> mat4 mat4::ortho(float left, float right, float bottom,
float top, float near, float far)
{
float invrl = (right != left) ? 1.0f / (right - left) : 0.0f;
float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f;
float invfn = (far != near) ? 1.0f / (far - near) : 0.0f;

mat4 ret(0.0f);
ret[0][0] = 2.0f * invrl;
ret[1][1] = 2.0f * invtb;
ret[2][2] = -2.0f * invfn;
ret[3][0] = - (right + left) * invrl;
ret[3][1] = - (top + bottom) * invtb;
ret[3][2] = - (far + near) * invfn;
ret[3][3] = 1.0f;
return ret;
}

template<> mat4 mat4::ortho(float width, float height,
float near, float far)
{
return mat4::ortho(-0.5f * width, 0.5f * width,
-0.5f * height, 0.5f * height, near, far);
}

template<> mat4 mat4::frustum(float left, float right, float bottom,
float top, float near, float far)
{
float invrl = (right != left) ? 1.0f / (right - left) : 0.0f;
float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f;
float invfn = (far != near) ? 1.0f / (far - near) : 0.0f;

mat4 ret(0.0f);
ret[0][0] = 2.0f * near * invrl;
ret[1][1] = 2.0f * near * invtb;
ret[2][0] = (right + left) * invrl;
ret[2][1] = (top + bottom) * invtb;
ret[2][2] = - (far + near) * invfn;
ret[2][3] = -1.0f;
ret[3][2] = -2.0f * far * near * invfn;
return ret;
}

//Returns a standard perspective matrix
template<> mat4 mat4::perspective(float fov_y, float width,
float height, float near, float far)
{
float t2 = lol::tan(radians(fov_y) * 0.5f);
float t1 = t2 * width / height;

return frustum(-near * t1, near * t1, -near * t2, near * t2, near, far);
}

//Returns a perspective matrix with the camera location shifted to be on the near plane
template<> mat4 mat4::shifted_perspective(float fov_y, float screen_size,
float screen_ratio_yx, float near, float far)
{
float tan_y = tanf(radians(fov_y) * .5f);
ASSERT(tan_y > 0.000001f);
float dist_scr = (screen_size * screen_ratio_yx * .5f) / tan_y;

return mat4::perspective(fov_y, screen_size, screen_size * screen_ratio_yx,
max(.001f, dist_scr + near),
max(.001f, dist_scr + far)) *
mat4::translate(.0f, .0f, -dist_scr);
}

} /* namespace lol */


+ 313
- 0
src/math/transform.cpp View File

@@ -0,0 +1,313 @@
//
// Lol Engine
//
// Copyright: (c) 2010-2014 Sam Hocevar <sam@hocevar.net>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the Do What The Fuck You Want To
// Public License, Version 2, as published by Sam Hocevar. See
// http://www.wtfpl.net/ for more details.
//

#if defined HAVE_CONFIG_H
# include "config.h"
#endif

#include <lol/main.h>

namespace lol
{

static inline void MatrixToQuat(quat &that, mat3 const &m)
{
/* See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/christian.htm for a version with no branches */
float t = m[0][0] + m[1][1] + m[2][2];
if (t > 0)
{
that.w = 0.5f * std::sqrt(1.0f + t);
float s = 0.25f / that.w;
that.x = s * (m[1][2] - m[2][1]);
that.y = s * (m[2][0] - m[0][2]);
that.z = s * (m[0][1] - m[1][0]);
}
else if (m[0][0] > m[1][1] && m[0][0] > m[2][2])
{
that.x = 0.5f * std::sqrt(1.0f + m[0][0] - m[1][1] - m[2][2]);
float s = 0.25f / that.x;
that.y = s * (m[0][1] + m[1][0]);
that.z = s * (m[2][0] + m[0][2]);
that.w = s * (m[1][2] - m[2][1]);
}
else if (m[1][1] > m[2][2])
{
that.y = 0.5f * std::sqrt(1.0f - m[0][0] + m[1][1] - m[2][2]);
float s = 0.25f / that.y;
that.x = s * (m[0][1] + m[1][0]);
that.z = s * (m[1][2] + m[2][1]);
that.w = s * (m[2][0] - m[0][2]);
}
else
{
that.z = 0.5f * std::sqrt(1.0f - m[0][0] - m[1][1] + m[2][2]);
float s = 0.25f / that.z;
that.x = s * (m[2][0] + m[0][2]);
that.y = s * (m[1][2] + m[2][1]);
that.w = s * (m[0][1] - m[1][0]);
}
}

template<> quat::quat_t(mat3 const &m)
{
MatrixToQuat(*this, m);
}

template<> quat::quat_t(mat4 const &m)
{
MatrixToQuat(*this, mat3(m));
}

template<> quat quat::rotate(float degrees, vec3 const &v)
{
float half_angle = radians(degrees) * 0.5f;

vec3 tmp = normalize(v) * sin(half_angle);

return quat(cos(half_angle), tmp.x, tmp.y, tmp.z);
}

template<> quat quat::rotate(float degrees, float x, float y, float z)
{
return quat::rotate(degrees, vec3(x, y, z));
}

template<> quat quat::rotate(vec3 const &src, vec3 const &dst)
{
/* Algorithm directly taken from Sam Hocevar's article "Quaternion from
* two vectors: the final version".
* http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final */
float magnitude = lol::sqrt(sqlength(src) * sqlength(dst));
float real_part = magnitude + dot(src, dst);
vec3 w;

if (real_part < 1.e-6f * magnitude)
{
/* If src and dst are exactly opposite, rotate 180 degrees
* around an arbitrary orthogonal axis. Axis normalisation
* can happen later, when we normalise the quaternion. */
real_part = 0.0f;
w = abs(src.x) > abs(src.z) ? vec3(-src.y, src.x, 0.f)
: vec3(0.f, -src.z, src.y);
}
else
{
/* Otherwise, build quaternion the standard way. */
w = cross(src, dst);
}

return normalize(quat(real_part, w.x, w.y, w.z));
}

template<> quat slerp(quat const &qa, quat const &qb, float f)
{
float const magnitude = lol::sqrt(sqlength(qa) * sqlength(qb));
float const product = lol::dot(qa, qb) / magnitude;

/* If quaternions are equal or opposite, there is no need
* to slerp anything, just return qa. */
if (std::abs(product) >= 1.0f)
return qa;

float const sign = (product < 0.0f) ? -1.0f : 1.0f;
float const theta = lol::acos(sign * product);
float const s1 = lol::sin(sign * f * theta);
float const s0 = lol::sin((1.0f - f) * theta);

/* This is the same as 1/sin(theta) */
float const d = 1.0f / lol::sqrt(1.f - product * product);

return qa * (s0 * d) + qb * (s1 * d);
}

static inline vec3 quat_toeuler_generic(quat const &q, int i, int j, int k)
{
float n = norm(q);

if (!n)
return vec3::zero;

/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;

vec3 ret;

/* k == i means X-Y-X style Euler angles; otherwise we’re
* actually handling X-Y-Z style Tait-Bryan angles. */
if (k == i)
{
k = 3 - i - j;

ret[0] = atan2(q[1 + i] * q[1 + j] + sign * (q.w * q[1 + k]),
q.w * q[1 + j] - sign * (q[1 + i] * q[1 + k]));
ret[1] = acos(2.f * (sq(q.w) + sq(q[1 + i])) - 1.f);
ret[2] = atan2(q[1 + i] * q[1 + j] - sign * (q.w * q[1 + k]),
q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k]));
}
else
{
ret[0] = atan2(2.f * (q.w * q[1 + i] - sign * (q[1 + j] * q[1 + k])),
1.f - 2.f * (sq(q[1 + i]) + sq(q[1 + j])));
ret[1] = asin(2.f * (q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k])));
ret[2] = atan2(2.f * (q.w * q[1 + k] - sign * (q[1 + j] * q[1 + i])),
1.f - 2.f * (sq(q[1 + k]) + sq(q[1 + j])));
}

return degrees(ret / n);
}

static inline mat3 mat3_fromeuler_generic(vec3 const &v, int i, int j, int k)
{
mat3 ret;

vec3 const w = radians(v);
float const s0 = sin(w[0]), c0 = cos(w[0]);
float const s1 = sin(w[1]), c1 = cos(w[1]);
float const s2 = sin(w[2]), c2 = cos(w[2]);

/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;

/* k == i means X-Y-X style Euler angles; otherwise we’re
* actually handling X-Y-Z style Tait-Bryan angles. */
if (k == i)
{
k = 3 - i - j;

ret[i][i] = c1;
ret[i][j] = s0 * s1;
ret[i][k] = - sign * (c0 * s1);

ret[j][i] = s1 * s2;
ret[j][j] = c0 * c2 - s0 * c1 * s2;
ret[j][k] = sign * (s0 * c2 + c0 * c1 * s2);

ret[k][i] = sign * (s1 * c2);
ret[k][j] = - sign * (c0 * s2 + s0 * c1 * c2);
ret[k][k] = - s0 * s2 + c0 * c1 * c2;
}
else
{
ret[i][i] = c1 * c2;
ret[i][j] = sign * (c0 * s2) + s0 * s1 * c2;
ret[i][k] = s0 * s2 - sign * (c0 * s1 * c2);

ret[j][i] = - sign * (c1 * s2);
ret[j][j] = c0 * c2 - sign * (s0 * s1 * s2);
ret[j][k] = sign * (s0 * c2) + c0 * s1 * s2;

ret[k][i] = sign * s1;
ret[k][j] = - sign * (s0 * c1);
ret[k][k] = c0 * c1;
}

return ret;
}

static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k)
{
vec3 const half_angles = radians(v * 0.5f);
float const s0 = sin(half_angles[0]), c0 = cos(half_angles[0]);
float const s1 = sin(half_angles[1]), c1 = cos(half_angles[1]);
float const s2 = sin(half_angles[2]), c2 = cos(half_angles[2]);

quat ret;

/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;

/* k == i means X-Y-X style Euler angles; otherwise we’re
* actually handling X-Y-Z style Tait-Bryan angles. */
if (k == i)
{
k = 3 - i - j;

ret[0] = c1 * (c0 * c2 - s0 * s2);
ret[1 + i] = c1 * (c0 * s2 + s0 * c2);
ret[1 + j] = s1 * (c0 * c2 + s0 * s2);
ret[1 + k] = sign * (s1 * (s0 * c2 - c0 * s2));
}
else
{
ret[0] = c0 * c1 * c2 - sign * (s0 * s1 * s2);
ret[1 + i] = s0 * c1 * c2 + sign * (c0 * s1 * s2);
ret[1 + j] = c0 * s1 * c2 - sign * (s0 * c1 * s2);
ret[1 + k] = c0 * c1 * s2 + sign * (s0 * s1 * c2);
}

return ret;
}

#define DEFINE_GENERIC_EULER_CONVERSIONS(a1, a2, a3) \
DEFINE_GENERIC_EULER_CONVERSIONS_INNER(a1, a2, a3, a1##a2##a3) \

#define DEFINE_GENERIC_EULER_CONVERSIONS_INNER(a1, a2, a3, name) \
/* Create quaternions from Euler angles */ \
template<> quat quat::fromeuler_##name(vec3 const &v) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return quat_fromeuler_generic(v, a1, a2, a3); \
} \
\
template<> quat quat::fromeuler_##name(float phi, float theta, float psi) \
{ \
return quat::fromeuler_##name(vec3(phi, theta, psi)); \
} \
\
/* Create 3×3 matrices from Euler angles */ \
template<> mat3 mat3::fromeuler_##name(vec3 const &v) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return mat3_fromeuler_generic(v, a1, a2, a3); \
} \
\
template<> mat3 mat3::fromeuler_##name(float phi, float theta, float psi) \
{ \
return mat3::fromeuler_##name(vec3(phi, theta, psi)); \
} \
\
/* Create 4×4 matrices from Euler angles */ \
template<> mat4 mat4::fromeuler_##name(vec3 const &v) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return mat4(mat3_fromeuler_generic(v, a1, a2, a3), 1.f); \
} \
\
template<> mat4 mat4::fromeuler_##name(float phi, float theta, float psi) \
{ \
return mat4::fromeuler_##name(vec3(phi, theta, psi)); \
} \
\
/* Retrieve Euler angles from a quaternion */ \
template<> vec3 vec3::toeuler_##name(quat const &q) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return quat_toeuler_generic(q, a1, a2, a3); \
}

DEFINE_GENERIC_EULER_CONVERSIONS(x, y, x)
DEFINE_GENERIC_EULER_CONVERSIONS(x, z, x)
DEFINE_GENERIC_EULER_CONVERSIONS(y, x, y)
DEFINE_GENERIC_EULER_CONVERSIONS(y, z, y)
DEFINE_GENERIC_EULER_CONVERSIONS(z, x, z)
DEFINE_GENERIC_EULER_CONVERSIONS(z, y, z)

DEFINE_GENERIC_EULER_CONVERSIONS(x, y, z)
DEFINE_GENERIC_EULER_CONVERSIONS(x, z, y)
DEFINE_GENERIC_EULER_CONVERSIONS(y, x, z)
DEFINE_GENERIC_EULER_CONVERSIONS(y, z, x)
DEFINE_GENERIC_EULER_CONVERSIONS(z, x, y)
DEFINE_GENERIC_EULER_CONVERSIONS(z, y, x)

#undef DEFINE_GENERIC_EULER_CONVERSIONS
#undef DEFINE_GENERIC_EULER_CONVERSIONS_INNER

} /* namespace lol */


+ 0
- 620
src/math/vector.cpp View File

@@ -12,9 +12,6 @@
# include "config.h" # include "config.h"
#endif #endif


#include <cstdlib> /* free() */
#include <cstring> /* strdup() */

#include <ostream> /* std::ostream */ #include <ostream> /* std::ostream */


#include <lol/main.h> #include <lol/main.h>
@@ -22,126 +19,6 @@
namespace lol namespace lol
{ {


/*
* Return the determinant of a 2×2 matrix.
*/
static inline float det2(float a, float b,
float c, float d)
{
return a * d - b * c;
}

/*
* Return the determinant of a 3×3 matrix.
*/
static inline float det3(float a, float b, float c,
float d, float e, float f,
float g, float h, float i)
{
return a * (e * i - h * f)
+ b * (f * g - i * d)
+ c * (d * h - g * e);
}

/*
* Return the cofactor of the (i,j) entry in a 2×2 matrix.
*/
static inline float cofact(mat2 const &m, int i, int j)
{
float tmp = m[(i + 1) & 1][(j + 1) & 1];
return ((i + j) & 1) ? -tmp : tmp;
}

/*
* Return the cofactor of the (i,j) entry in a 3×3 matrix.
*/
static inline float cofact(mat3 const &m, int i, int j)
{
return det2(m[(i + 1) % 3][(j + 1) % 3],
m[(i + 2) % 3][(j + 1) % 3],
m[(i + 1) % 3][(j + 2) % 3],
m[(i + 2) % 3][(j + 2) % 3]);
}

/*
* Return the cofactor of the (i,j) entry in a 4×4 matrix.
*/
static inline float cofact(mat4 const &m, int i, int j)
{
return det3(m[(i + 1) & 3][(j + 1) & 3],
m[(i + 2) & 3][(j + 1) & 3],
m[(i + 3) & 3][(j + 1) & 3],
m[(i + 1) & 3][(j + 2) & 3],
m[(i + 2) & 3][(j + 2) & 3],
m[(i + 3) & 3][(j + 2) & 3],
m[(i + 1) & 3][(j + 3) & 3],
m[(i + 2) & 3][(j + 3) & 3],
m[(i + 3) & 3][(j + 3) & 3]) * (((i + j) & 1) ? -1.0f : 1.0f);
}

template<> float determinant(mat2 const &m)
{
return det2(m[0][0], m[0][1],
m[1][0], m[1][1]);
}

template<> mat2 inverse(mat2 const &m)
{
mat2 ret;
float d = determinant(m);
if (d)
{
d = 1.0f / d;
for (int j = 0; j < 2; j++)
for (int i = 0; i < 2; i++)
ret[j][i] = cofact(m, i, j) * d;
}
return ret;
}

template<> float determinant(mat3 const &m)
{
return det3(m[0][0], m[0][1], m[0][2],
m[1][0], m[1][1], m[1][2],
m[2][0], m[2][1], m[2][2]);
}

template<> mat3 inverse(mat3 const &m)
{
mat3 ret;
float d = determinant(m);
if (d)
{
d = 1.0f / d;
for (int j = 0; j < 3; j++)
for (int i = 0; i < 3; i++)
ret[j][i] = cofact(m, i, j) * d;
}
return ret;
}

template<> float determinant(mat4 const &m)
{
float ret = 0;
for (int n = 0; n < 4; n++)
ret += m[n][0] * cofact(m, n, 0);
return ret;
}

template<> mat4 inverse(mat4 const &m)
{
mat4 ret;
float d = determinant(m);
if (d)
{
d = 1.0f / d;
for (int j = 0; j < 4; j++)
for (int i = 0; i < 4; i++)
ret[j][i] = cofact(m, i, j) * d;
}
return ret;
}

#define LOL_PRINTF_TOSTRING(type, ...) \ #define LOL_PRINTF_TOSTRING(type, ...) \
template<> void type::printf() const { Log::Debug(__VA_ARGS__); } \ template<> void type::printf() const { Log::Debug(__VA_ARGS__); } \
template<> String type::tostring() const { return String::Printf(__VA_ARGS__); } template<> String type::tostring() const { return String::Printf(__VA_ARGS__); }
@@ -284,502 +161,5 @@ template<> std::ostream &operator<<(std::ostream &stream, mat4 const &m)
return stream; return stream;
} }


template<> mat3 mat3::scale(float x)
{
mat3 ret(1.0f);

ret[0][0] = x;
ret[1][1] = x;
ret[2][2] = x;

return ret;
}

template<> mat3 mat3::scale(float x, float y, float z)
{
mat3 ret(1.0f);

ret[0][0] = x;
ret[1][1] = y;
ret[2][2] = z;

return ret;
}

template<> mat3 mat3::scale(vec3 v)
{
return scale(v.x, v.y, v.z);
}

template<> mat4 mat4::translate(float x, float y, float z)
{
mat4 ret(1.0f);
ret[3][0] = x;
ret[3][1] = y;
ret[3][2] = z;
return ret;
}

template<> mat4 mat4::translate(vec3 v)
{
return translate(v.x, v.y, v.z);
}

template<> mat2 mat2::rotate(float degrees)
{
float st = sin(radians(degrees));
float ct = cos(radians(degrees));

mat2 ret;

ret[0][0] = ct;
ret[0][1] = st;

ret[1][0] = -st;
ret[1][1] = ct;

return ret;
}

template<> mat3 mat3::rotate(float degrees, float x, float y, float z)
{
float st = sin(radians(degrees));
float ct = cos(radians(degrees));

float len = std::sqrt(x * x + y * y + z * z);
float invlen = len ? 1.0f / len : 0.0f;
x *= invlen;
y *= invlen;
z *= invlen;

float mtx = (1.0f - ct) * x;
float mty = (1.0f - ct) * y;
float mtz = (1.0f - ct) * z;

mat3 ret;

ret[0][0] = x * mtx + ct;
ret[0][1] = x * mty + st * z;
ret[0][2] = x * mtz - st * y;

ret[1][0] = y * mtx - st * z;
ret[1][1] = y * mty + ct;
ret[1][2] = y * mtz + st * x;

ret[2][0] = z * mtx + st * y;
ret[2][1] = z * mty - st * x;
ret[2][2] = z * mtz + ct;

return ret;
}

template<> mat3 mat3::rotate(float degrees, vec3 v)
{
return rotate(degrees, v.x, v.y, v.z);
}

template<> mat3::mat_t(quat const &q)
{
float n = norm(q);

if (!n)
{
for (int j = 0; j < 3; j++)
for (int i = 0; i < 3; i++)
(*this)[i][j] = (i == j) ? 1.f : 0.f;
return;
}

float s = 2.0f / n;

(*this)[0][0] = 1.0f - s * (q.y * q.y + q.z * q.z);
(*this)[0][1] = s * (q.x * q.y + q.z * q.w);
(*this)[0][2] = s * (q.x * q.z - q.y * q.w);

(*this)[1][0] = s * (q.x * q.y - q.z * q.w);
(*this)[1][1] = 1.0f - s * (q.z * q.z + q.x * q.x);
(*this)[1][2] = s * (q.y * q.z + q.x * q.w);

(*this)[2][0] = s * (q.x * q.z + q.y * q.w);
(*this)[2][1] = s * (q.y * q.z - q.x * q.w);
(*this)[2][2] = 1.0f - s * (q.x * q.x + q.y * q.y);
}

template<> mat4::mat_t(quat const &q)
{
*this = mat4(mat3(q), 1.f);
}

static inline void MatrixToQuat(quat &that, mat3 const &m)
{
/* See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/christian.htm for a version with no branches */
float t = m[0][0] + m[1][1] + m[2][2];
if (t > 0)
{
that.w = 0.5f * std::sqrt(1.0f + t);
float s = 0.25f / that.w;
that.x = s * (m[1][2] - m[2][1]);
that.y = s * (m[2][0] - m[0][2]);
that.z = s * (m[0][1] - m[1][0]);
}
else if (m[0][0] > m[1][1] && m[0][0] > m[2][2])
{
that.x = 0.5f * std::sqrt(1.0f + m[0][0] - m[1][1] - m[2][2]);
float s = 0.25f / that.x;
that.y = s * (m[0][1] + m[1][0]);
that.z = s * (m[2][0] + m[0][2]);
that.w = s * (m[1][2] - m[2][1]);
}
else if (m[1][1] > m[2][2])
{
that.y = 0.5f * std::sqrt(1.0f - m[0][0] + m[1][1] - m[2][2]);
float s = 0.25f / that.y;
that.x = s * (m[0][1] + m[1][0]);
that.z = s * (m[1][2] + m[2][1]);
that.w = s * (m[2][0] - m[0][2]);
}
else
{
that.z = 0.5f * std::sqrt(1.0f - m[0][0] - m[1][1] + m[2][2]);
float s = 0.25f / that.z;
that.x = s * (m[2][0] + m[0][2]);
that.y = s * (m[1][2] + m[2][1]);
that.w = s * (m[0][1] - m[1][0]);
}
}

template<> quat::quat_t(mat3 const &m)
{
MatrixToQuat(*this, m);
}

template<> quat::quat_t(mat4 const &m)
{
MatrixToQuat(*this, mat3(m));
}

template<> quat quat::rotate(float degrees, vec3 const &v)
{
float half_angle = radians(degrees) * 0.5f;

vec3 tmp = normalize(v) * sin(half_angle);

return quat(cos(half_angle), tmp.x, tmp.y, tmp.z);
}

template<> quat quat::rotate(float degrees, float x, float y, float z)
{
return quat::rotate(degrees, vec3(x, y, z));
}

template<> quat quat::rotate(vec3 const &src, vec3 const &dst)
{
/* Algorithm directly taken from Sam Hocevar's article "Quaternion from
* two vectors: the final version".
* http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final */
float magnitude = lol::sqrt(sqlength(src) * sqlength(dst));
float real_part = magnitude + dot(src, dst);
vec3 w;

if (real_part < 1.e-6f * magnitude)
{
/* If src and dst are exactly opposite, rotate 180 degrees
* around an arbitrary orthogonal axis. Axis normalisation
* can happen later, when we normalise the quaternion. */
real_part = 0.0f;
w = abs(src.x) > abs(src.z) ? vec3(-src.y, src.x, 0.f)
: vec3(0.f, -src.z, src.y);
}
else
{
/* Otherwise, build quaternion the standard way. */
w = cross(src, dst);
}

return normalize(quat(real_part, w.x, w.y, w.z));
}

template<> quat slerp(quat const &qa, quat const &qb, float f)
{
float const magnitude = lol::sqrt(sqlength(qa) * sqlength(qb));
float const product = lol::dot(qa, qb) / magnitude;

/* If quaternions are equal or opposite, there is no need
* to slerp anything, just return qa. */
if (std::abs(product) >= 1.0f)
return qa;

float const sign = (product < 0.0f) ? -1.0f : 1.0f;
float const theta = lol::acos(sign * product);
float const s1 = lol::sin(sign * f * theta);
float const s0 = lol::sin((1.0f - f) * theta);

/* This is the same as 1/sin(theta) */
float const d = 1.0f / lol::sqrt(1.f - product * product);

return qa * (s0 * d) + qb * (s1 * d);
}

static inline vec3 quat_toeuler_generic(quat const &q, int i, int j, int k)
{
float n = norm(q);

if (!n)
return vec3::zero;

/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;

vec3 ret;

/* k == i means X-Y-X style Euler angles; otherwise we’re
* actually handling X-Y-Z style Tait-Bryan angles. */
if (k == i)
{
k = 3 - i - j;

ret[0] = atan2(q[1 + i] * q[1 + j] + sign * (q.w * q[1 + k]),
q.w * q[1 + j] - sign * (q[1 + i] * q[1 + k]));
ret[1] = acos(2.f * (sq(q.w) + sq(q[1 + i])) - 1.f);
ret[2] = atan2(q[1 + i] * q[1 + j] - sign * (q.w * q[1 + k]),
q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k]));
}
else
{
ret[0] = atan2(2.f * (q.w * q[1 + i] - sign * (q[1 + j] * q[1 + k])),
1.f - 2.f * (sq(q[1 + i]) + sq(q[1 + j])));
ret[1] = asin(2.f * (q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k])));
ret[2] = atan2(2.f * (q.w * q[1 + k] - sign * (q[1 + j] * q[1 + i])),
1.f - 2.f * (sq(q[1 + k]) + sq(q[1 + j])));
}

return degrees(ret / n);
}

static inline mat3 mat3_fromeuler_generic(vec3 const &v, int i, int j, int k)
{
mat3 ret;

vec3 const w = radians(v);
float const s0 = sin(w[0]), c0 = cos(w[0]);
float const s1 = sin(w[1]), c1 = cos(w[1]);
float const s2 = sin(w[2]), c2 = cos(w[2]);

/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;

/* k == i means X-Y-X style Euler angles; otherwise we’re
* actually handling X-Y-Z style Tait-Bryan angles. */
if (k == i)
{
k = 3 - i - j;

ret[i][i] = c1;
ret[i][j] = s0 * s1;
ret[i][k] = - sign * (c0 * s1);

ret[j][i] = s1 * s2;
ret[j][j] = c0 * c2 - s0 * c1 * s2;
ret[j][k] = sign * (s0 * c2 + c0 * c1 * s2);

ret[k][i] = sign * (s1 * c2);
ret[k][j] = - sign * (c0 * s2 + s0 * c1 * c2);
ret[k][k] = - s0 * s2 + c0 * c1 * c2;
}
else
{
ret[i][i] = c1 * c2;
ret[i][j] = sign * (c0 * s2) + s0 * s1 * c2;
ret[i][k] = s0 * s2 - sign * (c0 * s1 * c2);

ret[j][i] = - sign * (c1 * s2);
ret[j][j] = c0 * c2 - sign * (s0 * s1 * s2);
ret[j][k] = sign * (s0 * c2) + c0 * s1 * s2;

ret[k][i] = sign * s1;
ret[k][j] = - sign * (s0 * c1);
ret[k][k] = c0 * c1;
}

return ret;
}

static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k)
{
vec3 const half_angles = radians(v * 0.5f);
float const s0 = sin(half_angles[0]), c0 = cos(half_angles[0]);
float const s1 = sin(half_angles[1]), c1 = cos(half_angles[1]);
float const s2 = sin(half_angles[2]), c2 = cos(half_angles[2]);

quat ret;

/* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */
float const sign = ((2 + i - j) % 3) ? 1.f : -1.f;

/* k == i means X-Y-X style Euler angles; otherwise we’re
* actually handling X-Y-Z style Tait-Bryan angles. */
if (k == i)
{
k = 3 - i - j;

ret[0] = c1 * (c0 * c2 - s0 * s2);
ret[1 + i] = c1 * (c0 * s2 + s0 * c2);
ret[1 + j] = s1 * (c0 * c2 + s0 * s2);
ret[1 + k] = sign * (s1 * (s0 * c2 - c0 * s2));
}
else
{
ret[0] = c0 * c1 * c2 - sign * (s0 * s1 * s2);
ret[1 + i] = s0 * c1 * c2 + sign * (c0 * s1 * s2);
ret[1 + j] = c0 * s1 * c2 - sign * (s0 * c1 * s2);
ret[1 + k] = c0 * c1 * s2 + sign * (s0 * s1 * c2);
}

return ret;
}

#define DEFINE_GENERIC_EULER_CONVERSIONS(a1, a2, a3) \
DEFINE_GENERIC_EULER_CONVERSIONS_INNER(a1, a2, a3, a1##a2##a3) \

#define DEFINE_GENERIC_EULER_CONVERSIONS_INNER(a1, a2, a3, name) \
/* Create quaternions from Euler angles */ \
template<> quat quat::fromeuler_##name(vec3 const &v) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return quat_fromeuler_generic(v, a1, a2, a3); \
} \
\
template<> quat quat::fromeuler_##name(float phi, float theta, float psi) \
{ \
return quat::fromeuler_##name(vec3(phi, theta, psi)); \
} \
\
/* Create 3×3 matrices from Euler angles */ \
template<> mat3 mat3::fromeuler_##name(vec3 const &v) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return mat3_fromeuler_generic(v, a1, a2, a3); \
} \
\
template<> mat3 mat3::fromeuler_##name(float phi, float theta, float psi) \
{ \
return mat3::fromeuler_##name(vec3(phi, theta, psi)); \
} \
\
/* Create 4×4 matrices from Euler angles */ \
template<> mat4 mat4::fromeuler_##name(vec3 const &v) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return mat4(mat3_fromeuler_generic(v, a1, a2, a3), 1.f); \
} \
\
template<> mat4 mat4::fromeuler_##name(float phi, float theta, float psi) \
{ \
return mat4::fromeuler_##name(vec3(phi, theta, psi)); \
} \
\
/* Retrieve Euler angles from a quaternion */ \
template<> vec3 vec3::toeuler_##name(quat const &q) \
{ \
int x = 0, y = 1, z = 2; UNUSED(x, y, z); \
return quat_toeuler_generic(q, a1, a2, a3); \
}

DEFINE_GENERIC_EULER_CONVERSIONS(x, y, x)
DEFINE_GENERIC_EULER_CONVERSIONS(x, z, x)
DEFINE_GENERIC_EULER_CONVERSIONS(y, x, y)
DEFINE_GENERIC_EULER_CONVERSIONS(y, z, y)
DEFINE_GENERIC_EULER_CONVERSIONS(z, x, z)
DEFINE_GENERIC_EULER_CONVERSIONS(z, y, z)

DEFINE_GENERIC_EULER_CONVERSIONS(x, y, z)
DEFINE_GENERIC_EULER_CONVERSIONS(x, z, y)
DEFINE_GENERIC_EULER_CONVERSIONS(y, x, z)
DEFINE_GENERIC_EULER_CONVERSIONS(y, z, x)
DEFINE_GENERIC_EULER_CONVERSIONS(z, x, y)
DEFINE_GENERIC_EULER_CONVERSIONS(z, y, x)

#undef DEFINE_GENERIC_EULER_CONVERSIONS
#undef DEFINE_GENERIC_EULER_CONVERSIONS_INNER

template<> mat4 mat4::lookat(vec3 eye, vec3 center, vec3 up)
{
vec3 v3 = normalize(eye - center);
vec3 v1 = normalize(cross(up, v3));
vec3 v2 = cross(v3, v1);

return mat4(vec4(v1.x, v2.x, v3.x, 0.f),
vec4(v1.y, v2.y, v3.y, 0.f),
vec4(v1.z, v2.z, v3.z, 0.f),
vec4(-dot(eye, v1), -dot(eye, v2), -dot(eye, v3), 1.f));
}

template<> mat4 mat4::ortho(float left, float right, float bottom,
float top, float near, float far)
{
float invrl = (right != left) ? 1.0f / (right - left) : 0.0f;
float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f;
float invfn = (far != near) ? 1.0f / (far - near) : 0.0f;

mat4 ret(0.0f);
ret[0][0] = 2.0f * invrl;
ret[1][1] = 2.0f * invtb;
ret[2][2] = -2.0f * invfn;
ret[3][0] = - (right + left) * invrl;
ret[3][1] = - (top + bottom) * invtb;
ret[3][2] = - (far + near) * invfn;
ret[3][3] = 1.0f;
return ret;
}

template<> mat4 mat4::ortho(float width, float height,
float near, float far)
{
return mat4::ortho(-0.5f * width, 0.5f * width,
-0.5f * height, 0.5f * height, near, far);
}

template<> mat4 mat4::frustum(float left, float right, float bottom,
float top, float near, float far)
{
float invrl = (right != left) ? 1.0f / (right - left) : 0.0f;
float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f;
float invfn = (far != near) ? 1.0f / (far - near) : 0.0f;

mat4 ret(0.0f);
ret[0][0] = 2.0f * near * invrl;
ret[1][1] = 2.0f * near * invtb;
ret[2][0] = (right + left) * invrl;
ret[2][1] = (top + bottom) * invtb;
ret[2][2] = - (far + near) * invfn;
ret[2][3] = -1.0f;
ret[3][2] = -2.0f * far * near * invfn;
return ret;
}

//Returns a standard perspective matrix
template<> mat4 mat4::perspective(float fov_y, float width,
float height, float near, float far)
{
float t2 = lol::tan(radians(fov_y) * 0.5f);
float t1 = t2 * width / height;

return frustum(-near * t1, near * t1, -near * t2, near * t2, near, far);
}

//Returns a perspective matrix with the camera location shifted to be on the near plane
template<> mat4 mat4::shifted_perspective(float fov_y, float screen_size,
float screen_ratio_yx, float near, float far)
{
float tan_y = tanf(radians(fov_y) * .5f);
ASSERT(tan_y > 0.000001f);
float dist_scr = (screen_size * screen_ratio_yx * .5f) / tan_y;

return mat4::perspective(fov_y, screen_size, screen_size * screen_ratio_yx,
max(.001f, dist_scr + near),
max(.001f, dist_scr + far)) *
mat4::translate(.0f, .0f, -dist_scr);
}

} /* namespace lol */ } /* namespace lol */



Loading…
Cancel
Save