@@ -34,98 +34,6 @@ | |||
#define TEMPLATE_FILE "filter/blur.c" | |||
#include "pipi-template.h" | |||
/* Any standard deviation below this value will be rounded up, in order | |||
* to avoid ridiculously low values. exp(-1/(2*0.2*0.2)) is < 10^-5 so | |||
* there is little chance that any value below 0.2 will be useful. */ | |||
#define BLUR_EPSILON 0.2 | |||
pipi_image_t *pipi_gaussian_blur(pipi_image_t *src, float radius) | |||
{ | |||
return pipi_gaussian_blur_ext(src, radius, radius, 0.0, 0.0, 0.0); | |||
} | |||
pipi_image_t *pipi_gaussian_blur_ext(pipi_image_t *src, float rx, float ry, | |||
float angle, float dx, float dy) | |||
{ | |||
pipi_image_t *ret; | |||
double *kernel; | |||
double Kx, Ky, t = 0.0, sint, cost, bbx, bby; | |||
int i, j, krx, kry, m, n; | |||
if(rx < BLUR_EPSILON) rx = BLUR_EPSILON; | |||
if(ry < BLUR_EPSILON) ry = BLUR_EPSILON; | |||
sint = sin(angle * M_PI / 180.); | |||
cost = cos(angle * M_PI / 180.); | |||
/* Compute the final ellipse's bounding box */ | |||
bbx = sqrt(rx * rx * cost * cost + ry * ry * sint * sint); | |||
bby = sqrt(ry * ry * cost * cost + rx * rx * sint * sint); | |||
/* FIXME: the kernel becomes far too big with large values of dx, because | |||
* we grow both left and right. Fix the growing direction. */ | |||
krx = (int)(3. * bbx + .99999 + ceil(abs(dx))); | |||
m = 2 * krx + 1; | |||
Kx = -1. / (2. * rx * rx); | |||
kry = (int)(3. * bby + .99999 + ceil(abs(dy))); | |||
n = 2 * kry + 1; | |||
Ky = -1. / (2. * ry * ry); | |||
kernel = malloc(m * n * sizeof(double)); | |||
for(j = -kry; j <= kry; j++) | |||
{ | |||
for(i = -krx; i <= krx; i++) | |||
{ | |||
/* FIXME: this level of interpolation sucks. We should | |||
* interpolate on the full NxN grid for better quality. */ | |||
static double const samples[] = | |||
{ | |||
.0, .0, 1, | |||
-.40, -.40, 0.8, | |||
-.30, .0, 0.9, | |||
-.40, .40, 0.8, | |||
.0, .30, 0.9, | |||
.40, .40, 0.8, | |||
.30, .0, 0.9, | |||
.40, -.40, 0.8, | |||
.0, -.30, 0.9, | |||
}; | |||
double u, v, ex, ey, d = 0.; | |||
unsigned int k; | |||
for(k = 0; k < sizeof(samples) / sizeof(*samples) / 3; k++) | |||
{ | |||
u = ((double)i + samples[k * 3]) * cost | |||
- ((double)j + samples[k * 3 + 1]) * sint + dx; | |||
v = ((double)i + samples[k * 3]) * sint | |||
+ ((double)j + samples[k * 3 + 1]) * cost + dy; | |||
ex = Kx * u * u; | |||
ey = Ky * v * v; | |||
d += samples[k * 3 + 2] * exp(ex + ey); | |||
/* Do not interpolate if this is a standard gaussian. */ | |||
if(!dx && !dy && !angle) | |||
break; | |||
} | |||
kernel[(j + kry) * m + i + krx] = d; | |||
t += d; | |||
} | |||
} | |||
for(j = 0; j < n; j++) | |||
for(i = 0; i < m; i++) | |||
kernel[j * m + i] /= t; | |||
ret = pipi_convolution(src, m, n, kernel); | |||
free(kernel); | |||
return ret; | |||
} | |||
pipi_image_t *pipi_box_blur(pipi_image_t *src, int size) | |||
{ | |||
return pipi_box_blur_ext(src, size, size); | |||
@@ -277,5 +277,84 @@ Array2D<float> Image::EdiffKernel(EdiffAlgorithm algorithm) | |||
return ret; | |||
} | |||
/* Any standard deviation below this value will be rounded up, in order | |||
* to avoid ridiculously low values. exp(-1/(2*0.2*0.2)) is < 10^-5 so | |||
* there is little chance that any value below 0.2 will be useful. */ | |||
#define BLUR_EPSILON 0.2f | |||
Array2D<float> Image::GaussianKernel(vec2 radius, float angle, vec2 delta) | |||
{ | |||
Array2D<float> kernel; | |||
if (radius.x < BLUR_EPSILON) | |||
radius.x = BLUR_EPSILON; | |||
if (radius.y < BLUR_EPSILON) | |||
radius.y = BLUR_EPSILON; | |||
float const sint = lol::sin(angle); | |||
float const cost = lol::cos(angle); | |||
/* Compute the final ellipse's bounding box */ | |||
float const bbx = lol::sqrt(sq(radius.x * cost) + sq(radius.y * sint)); | |||
float const bby = lol::sqrt(sq(radius.y * cost) + sq(radius.x * sint)); | |||
/* FIXME: the kernel becomes far too big with large values of dx, because | |||
* we grow both left and right. Fix the growing direction. */ | |||
int const krx = (int)(3.f * bbx + .99999f + lol::ceil(lol::abs(delta.x))); | |||
int const kry = (int)(3.f * bby + .99999f + lol::ceil(lol::abs(delta.y))); | |||
ivec2 size(2 * krx + 1, 2 * kry + 1); | |||
float const Kx = -1.f / (2.f * radius.x * radius.x); | |||
float const Ky = -1.f / (2.f * radius.y * radius.y); | |||
kernel.SetSize(size); | |||
float t = 0.f; | |||
for (int j = -kry; j <= kry; j++) | |||
{ | |||
for (int i = -krx; i <= krx; i++) | |||
{ | |||
/* FIXME: this level of interpolation sucks. We should | |||
* interpolate on the full NxN grid for better quality. */ | |||
static vec3 const samples[] = | |||
{ | |||
vec3( 0.0f, 0.0f, 1.0f), | |||
vec3(-0.4f, -0.4f, 0.8f), | |||
vec3(-0.3f, 0.0f, 0.9f), | |||
vec3(-0.4f, 0.4f, 0.8f), | |||
vec3( 0.0f, 0.3f, 0.9f), | |||
vec3( 0.4f, 0.4f, 0.8f), | |||
vec3( 0.3f, 0.0f, 0.9f), | |||
vec3( 0.4f, -0.4f, 0.8f), | |||
vec3( 0.0f, -0.3f, 0.9f), | |||
}; | |||
float d = 0.f; | |||
for (auto p : samples) | |||
{ | |||
float u = (i + p.x) * cost - (j + p.y) * sint + delta.x; | |||
float v = (i + p.x) * sint + (j + p.y) * cost + delta.y; | |||
float ex = Kx * u * u; | |||
float ey = Ky * v * v; | |||
d += p.z * lol::exp(ex + ey); | |||
/* Do not interpolate if this is a standard gaussian. */ | |||
if (!delta.x && !delta.y && !angle) | |||
break; | |||
} | |||
kernel[i + krx][j + kry] = d; | |||
t += d; | |||
} | |||
} | |||
for (int j = 0; j < size.y; j++) | |||
for (int i = 0; i < size.x; i++) | |||
kernel[i][j] *= (1.f / t); | |||
return kernel; | |||
} | |||
} /* namespace lol */ | |||
@@ -95,6 +95,7 @@ public: | |||
static Array2D<float> HalftoneKernel(ivec2 size); | |||
static Array2D<float> EdiffKernel(EdiffAlgorithm algorithm); | |||
static Array2D<float> NormalizeKernel(Array2D<float> const &kernel); | |||
static Array2D<float> GaussianKernel(vec2 radius, float angle, vec2 delta); | |||
/* Rendering */ | |||
bool Stock(char const *desc); | |||