|
|
@@ -137,16 +137,16 @@ struct polynomial |
|
|
|
|
|
|
|
if (delta < T(0)) |
|
|
|
{ |
|
|
|
return array<T> {}; |
|
|
|
return array<T> {}; |
|
|
|
} |
|
|
|
else if (delta > T(0)) |
|
|
|
{ |
|
|
|
T const sqrt_delta = sqrt(delta); |
|
|
|
return array<T> { -k - sqrt_delta, -k + sqrt_delta }; |
|
|
|
T const sqrt_delta = sqrt(delta); |
|
|
|
return array<T> { -k - sqrt_delta, -k + sqrt_delta }; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
return array<T> { -k }; |
|
|
|
return array<T> { -k }; |
|
|
|
} |
|
|
|
} |
|
|
|
else if (degree() == 3) |
|
|
@@ -159,25 +159,33 @@ struct polynomial |
|
|
|
T const &c = m_coefficients[1]; |
|
|
|
T const &d = m_coefficients[0]; |
|
|
|
|
|
|
|
/* Find k, m and n such that: |
|
|
|
* q(x) = p(x - k) / a = x³ + amx + n */ |
|
|
|
/* Find k, m, and n such that p(x - k) / a = x³ + mx + n |
|
|
|
* q(x) = p(x - k) / a |
|
|
|
* = x³ + (b/a-3k) x² + ((c-2bk)/a+3k²) x + (d-ck+bk²)/a-k³ |
|
|
|
* |
|
|
|
* So we want k = b/3a and thus: |
|
|
|
* q(x) = x³ + (c-bk)/a x + (d-ck+2bk²/3)/a |
|
|
|
* |
|
|
|
* k = b / 3a |
|
|
|
* m = (c - bk) / a |
|
|
|
* n = (d - ck + 2bk²/3) / a */ |
|
|
|
T const k = b / (T(3) * a); |
|
|
|
T const m = c - b * k; |
|
|
|
T const m = (c - b * k) / a; |
|
|
|
T const n = ((T(2) / T(3) * b * k - c) * k + d) / a; |
|
|
|
|
|
|
|
/* Assuming x = u + v and 3uv = -m, then |
|
|
|
* q(u + v) = a(u + v) + n |
|
|
|
/* Let x = u + v, such that 3uv = -m, then: |
|
|
|
* q(u + v) = u³ + v³ + n |
|
|
|
* |
|
|
|
* We then need to solve the following system: |
|
|
|
* u³v³ = -m³/27 |
|
|
|
* u³ + v³ = -n |
|
|
|
* |
|
|
|
* which gives : |
|
|
|
* u³ - v³ = √(n² + 4m³/27) |
|
|
|
* Δ = n² + 4m³/27 |
|
|
|
* u³ - v³ = √Δ |
|
|
|
* u³ + v³ = -n |
|
|
|
* |
|
|
|
* u³ = (-n + √(n² + 4m³/27)) / 2 |
|
|
|
* v³ = (-n - √(n² + 4m³/27)) / 2 |
|
|
|
* u³,v³ = (-n ± √Δ) / 2 |
|
|
|
*/ |
|
|
|
T const delta = n * n + T(4) / T(27) * m * m * m; |
|
|
|
|
|
|
@@ -186,26 +194,25 @@ struct polynomial |
|
|
|
* |
|
|
|
* This is why we compute u³ and v³ by norm and angle separately |
|
|
|
* instead of using a std::complex class */ |
|
|
|
T u3_norm, u3_angle; |
|
|
|
T v3_norm, v3_angle; |
|
|
|
T u_norm, u3_angle; |
|
|
|
T v_norm, v3_angle; |
|
|
|
|
|
|
|
if (delta < 0) |
|
|
|
{ |
|
|
|
v3_norm = u3_norm = sqrt(n * n + abs(delta)) / T(2); |
|
|
|
v_norm = u_norm = sqrt(m / T(-3)); |
|
|
|
|
|
|
|
u3_angle = atan2(sqrt(abs(delta)), -n); |
|
|
|
u3_angle = atan2(sqrt(-delta), -n); |
|
|
|
v3_angle = -u3_angle; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
u3_norm = (-n + sqrt(delta)) / T(2); |
|
|
|
v3_norm = (-n - sqrt(delta)) / T(2); |
|
|
|
T const sqrt_delta = sqrt(delta); |
|
|
|
|
|
|
|
u3_angle = u3_norm >= 0 ? 0 : pi; |
|
|
|
v3_angle = v3_norm >= 0 ? 0 : -pi; |
|
|
|
u_norm = cbrt(abs(n - sqrt_delta) / T(2)); |
|
|
|
v_norm = cbrt(abs(n + sqrt_delta) / T(2)); |
|
|
|
|
|
|
|
u3_norm = abs(u3_norm); |
|
|
|
v3_norm = abs(v3_norm); |
|
|
|
u3_angle = (n >= sqrt_delta) ? pi : 0; |
|
|
|
v3_angle = (n <= -sqrt_delta) ? 0 : -pi; |
|
|
|
} |
|
|
|
|
|
|
|
T solutions[3]; |
|
|
@@ -215,8 +222,7 @@ struct polynomial |
|
|
|
T u_angle = (u3_angle + T(2 * i) * pi) / T(3); |
|
|
|
T v_angle = (v3_angle - T(2 * i) * pi) / T(3); |
|
|
|
|
|
|
|
solutions[i] = pow(u3_norm, T(1) / T(3)) * cos(u_angle) |
|
|
|
+ pow(v3_norm, T(1) / T(3)) * cos(v_angle); |
|
|
|
solutions[i] = u_norm * cos(u_angle) + v_norm * cos(v_angle); |
|
|
|
} |
|
|
|
|
|
|
|
if (delta < 0) // 3 real solutions |
|
|
@@ -227,7 +233,7 @@ struct polynomial |
|
|
|
if (delta > 0) // 1 real solution |
|
|
|
return array<T> { solutions[0] - k }; |
|
|
|
|
|
|
|
if (u3_norm > 0) // 2 real solutions |
|
|
|
if (u_norm > 0) // 2 real solutions |
|
|
|
return array<T> { solutions[0] - k, |
|
|
|
solutions[1] - k }; |
|
|
|
|
|
|
|