|
|
@@ -101,7 +101,7 @@ template<> real::~Real() |
|
|
|
delete[] m_mantissa; |
|
|
|
} |
|
|
|
|
|
|
|
/* FIXME: 64-bit integer loading is incorrect,we lose precision. */ |
|
|
|
/* FIXME: 64-bit integer loading is incorrect, we lose precision. */ |
|
|
|
template<> real::Real(int32_t i) { new(this) real((double)i); } |
|
|
|
template<> real::Real(uint32_t i) { new(this) real((double)i); } |
|
|
|
template<> real::Real(int64_t i) { new(this) real((double)i); } |
|
|
@@ -747,25 +747,41 @@ template<> real cbrt(real const &x) |
|
|
|
|
|
|
|
template<> real pow(real const &x, real const &y) |
|
|
|
{ |
|
|
|
/* Shortcuts for degenerate cases */ |
|
|
|
if (!y) |
|
|
|
return real::R_1(); |
|
|
|
if (!x) |
|
|
|
return real::R_0(); |
|
|
|
if (x > real::R_0()) |
|
|
|
return exp(y * log(x)); |
|
|
|
else /* x < 0 */ |
|
|
|
|
|
|
|
/* Small integer exponent: use exponentiation by squaring */ |
|
|
|
int int_y = (int)y; |
|
|
|
if (y == (real)int_y) |
|
|
|
{ |
|
|
|
/* Odd integer exponent */ |
|
|
|
if (y == (round(y / 2) * 2)) |
|
|
|
return exp(y * log(-x)); |
|
|
|
real ret = real::R_1(); |
|
|
|
real x_n = int_y > 0 ? x : inverse(x); |
|
|
|
|
|
|
|
/* Even integer exponent */ |
|
|
|
if (y == round(y)) |
|
|
|
return -exp(y * log(-x)); |
|
|
|
while (int_y) /* Can be > 0 or < 0 */ |
|
|
|
{ |
|
|
|
if (int_y & 1) |
|
|
|
ret *= x_n; |
|
|
|
x_n *= x_n; |
|
|
|
int_y /= 2; |
|
|
|
} |
|
|
|
|
|
|
|
/* FIXME: negative nth root */ |
|
|
|
return real::R_0(); |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
/* If x is positive, nothing special to do. */ |
|
|
|
if (x > real::R_0()) |
|
|
|
return exp(y * log(x)); |
|
|
|
|
|
|
|
/* XXX: manpage for pow() says “If x is a finite value less than 0, |
|
|
|
* and y is a finite noninteger, a domain error occurs, and a NaN is |
|
|
|
* returned”. We check whether y is closer to an even number or to |
|
|
|
* an odd number and return something reasonable. */ |
|
|
|
real round_y = round(y); |
|
|
|
bool is_odd = round_y / 2 == round(round_y / 2); |
|
|
|
return is_odd ? exp(y * log(-x)) : -exp(y * log(-x)); |
|
|
|
} |
|
|
|
|
|
|
|
static real fast_fact(unsigned int x) |
|
|
|