Pārlūkot izejas kodu

math: tweak simplex noise and add plenty of comments and debug code.

undefined
Sam Hocevar pirms 10 gadiem
vecāks
revīzija
7faf5d912a
1 mainītis faili ar 138 papildinājumiem un 52 dzēšanām
  1. +138
    -52
      src/lol/math/simplex_interpolator.h

+ 138
- 52
src/lol/math/simplex_interpolator.h Parādīt failu

@@ -46,39 +46,7 @@ public:
: m_seed(seed)
{
#if 0
// Print some debug information
printf("Simplex Noise of Dimension %d\n", N);

long long int n = 1; for (int i = 1; i <= N; ++i) n *= i;
printf(" - each hypercube cell has %lld simplices "
"with %d vertices and %d edges\n", n, N + 1, N * (N + 1) / 2);

vec_t<float, N> diagonal(1.f);
printf(" - length of hypercube edges is 1, diagonal is %f\n",
length(diagonal));
printf(" - length of parallelotope edges and diagonal is %f\n",
length(unskew(diagonal)));

vec_t<float, N> vertices[N + 1];
vertices[0] = vec_t<float, N>(0.f);
for (int i = 0; i < N; ++i)
{
vertices[i + 1] = vertices[i];
vertices[i + 1][i] += 1.f;
}
float minlength = 10.0f;
float maxlength = 0.0f;
for (int i = 0; i < N + 1; ++i)
for (int j = i + 1; j < N + 1; ++j)
{
float l = length(unskew(vertices[i] - vertices[j]));
minlength = min(minlength, l);
maxlength = max(maxlength, l);
}
printf(" - edge lengths between %f and %f\n", minlength, maxlength);
printf(" - predicted: %f and %f\n", sqrt((float)N/(N+1)),
sqrt((N+1)*(N+1)/4/(float)(N+1)));
printf("\n");
debugprint();
#endif
}

@@ -99,6 +67,7 @@ public:
vec_t<int, N> origin;
vec_t<float, N> pos;
get_origin(skew(position), origin, pos);

return get_gradient(origin);
}

@@ -127,16 +96,19 @@ protected:
/* “corner” will traverse the simplex along its edges in world
* coordinates. */
vec_t<float, N> world_corner(0.f);
float result = 0.f, coeff = 0.f;
float result = 0.f, sum = 0.f;

for (int i = 0; i < N + 1; ++i)
{
#if 1
// FIXME: In “Noise Hardware” (2-17) Perlin uses 0.6 but Gustavson
// makes an exception for dimension 2 and uses 0.5 instead.
// I think m should actually increase with the dimension count.
float const m = N == 2 ? 0.5f : 0.6f;
float d = m - sqlength(world_pos - world_corner);
// In “Noise Hardware” (2-17) Perlin uses 0.6 but Gustavson uses
// 0.5 instead, saying “else the noise is not continuous at
// simplex boundaries”.
// And indeed, the distance between any given simplex vertex and
// the opposite hyperplane is 1/sqrt(2), so the contribution of
// that vertex should never be > 0 for points further than
// 1/sqrt(2). Hence 0.5 - d².
float d = 0.5f - sqlength(world_pos - world_corner);
#else
// DEBUG: this is the linear contribution of each vertex
// in the skewed simplex. Unfortunately it creates artifacts.
@@ -146,18 +118,17 @@ protected:

if (d > 0)
{
vec_t<float, N> const &gradient = get_gradient(origin);

// Perlin uses 8d⁴ whereas Gustavson uses d⁴ and a final
// multiplication factor at the end.
//d = 8.f * d * d * d * d;
// multiplication factor at the end. Let’s go with
// Gustavson, it’s a few multiplications less.
d = d * d * d * d;

//d = (3.f - 2.f * d) * d * d;
//d = ((6 * d - 15) * d + 10) * d * d * d;

result += d * dot(gradient, world_pos - world_corner);
coeff += d;
result += d * dot(get_gradient(origin),
world_pos - world_corner);
sum += d;
}

if (i < N)
@@ -170,10 +141,14 @@ protected:
}

// FIXME: Gustavson uses the value 70 for dimension 2, 32 for
// dimension 3, and 27 for dimension 4; find where this comes from
// and maybe find a reasonable formula.
//return 70.f * result / coeff;
float const k = N == 2 ? 70 : N == 3 ? 32 : N == 4 ? 27 : 20;
// dimension 3, and 27 for dimension 4, and uses non-unit gradients
// of length sqrt(2), sqrt(2) and sqrt(3). Find out where this comes
// from and maybe find a more generic formula.
float const k = N == 2 ? (70.f * sqrt(2.f)) // approx. 99
: N == 3 ? (70.f * sqrt(2.f)) // approx. 45
: N == 4 ? (70.f * sqrt(3.f)) // approx. 47
: 50.f;
//return k * result / sum;
return k * result;
}

@@ -255,15 +230,126 @@ protected:

/* For a given world position, extract grid coordinates (origin) and
* the corresponding delta position (pos). */
inline void get_origin(vec_t<float, N> const & simplex_position,
inline void get_origin(vec_t<float, N> const & world_position,
vec_t<int, N> & origin, vec_t<float, N> & pos) const
{
// Finding floor point index
for (int i = 0; i < N; ++i)
origin[i] = ((int) simplex_position[i]) - (simplex_position[i] < 0 ? 1 : 0);
origin[i] = ((int)world_position[i]) - (world_position[i] < 0);

// Extracting decimal part from simplex sample
pos = simplex_position - (vec_t<float, N>)origin;
pos = world_position - (vec_t<float, N>)origin;
}

private:
void debugprint()
{
// Print some debug information
printf("Simplex Noise of Dimension %d\n", N);

long long int n = 1; for (int i = 1; i <= N; ++i) n *= i;
printf(" - each hypercube cell has %lld simplices "
"with %d vertices and %d edges\n", n, N + 1, N * (N + 1) / 2);

vec_t<float, N> diagonal(1.f);
printf(" - regular hypercube:\n");
printf(" · edge length 1\n");
printf(" · diagonal length %f\n", length(diagonal));
printf(" - unskewed parallelotope:\n");
printf(" · edge length %f\n", length(unskew(diagonal)));
printf(" · diagonal length %f\n", length(unskew(diagonal)));
printf(" · simplex edge lengths between %f and %f\n",
sqrt((float)N/(N+1)), sqrt((N+1)*(N+1)/4/(float)(N+1)));

/* Generate simplex vertices */
vec_t<float, N> vertices[N + 1];
vertices[0] = vec_t<float, N>(0.f);
for (int i = 0; i < N; ++i)
{
vertices[i + 1] = vertices[i];
vertices[i + 1][i] += 1.f;
}
for (int i = 0; i < N + 1; ++i)
vertices[i] = unskew(vertices[i]);

for (int i = 0; i < N + 1; ++i)
{
printf(" - vertex %d\n", i);

#if 0
/* Coordinates for debugging purposes */
printf(" · [");
for (int k = 0; k < N; ++k)
printf(" %f", vertices[i][k]);
printf(" ]\n");
#endif

/* Analyze edge lengths from that vertex */
float minlength = 1.0f;
float maxlength = 0.0f;
for (int j = 0; j < N + 1; ++j)
{
if (i == j)
continue;

float l = length(vertices[i] - vertices[j]);
minlength = min(minlength, l);
maxlength = max(maxlength, l);
}
printf(" · edge lengths between %f and %f\n",
minlength, maxlength);

#if 0
/* Experimental calculation of the distance to the opposite
* hyperplane, by picking random points. Works reasonably
* well up to dimension 6. After that, we’d need something
* better such as gradient walk. */
float mindist = 1.0f;
for (int run = 0; run < 10000000; ++run)
{
vec_t<float, N> p(0.f);
float sum = 0.f;
for (int j = 0; j < N + 1; ++j)
{
if (i == j)
continue;
float k = rand(1.f);
p += k * vertices[j];
sum += k;
}
mindist = min(mindist, distance(vertices[i], p / sum));
}
printf(" · approx. dist. to opposite hyperplane: %f\n", mindist);
#endif

#if 0
/* Find a normal vector to the opposite hyperplane. First, pick
* any point p(i0) on the hyperplane. We just need i0 != i. Then,
* build a matrix where each row is p(i0)p(j) for all j != i0.
* Multiplying this matrix by the normal vectors gives a vector
* full of zeroes except at position i. So we build a vector
* full of zeroes except at position i, and multiply it by the
* matrix inverse. */
int i0 = (i == 0) ? 1 : 0;
mat_t<float, N, N> m;
for (int j = 0; j < N; ++j)
{
auto v = vertices[j < i0 ? j : j + 1] - vertices[i0];
for (int k = 0; k < N; ++k)
m[k][j] = v[k];
}
vec_t<float, N> p(0.f);
p[i < i0 ? i : i - 1] = 1.f;
auto normal = normalize(inverse(m) * p);

/* Find distance from current vertex to the opposite hyperplane.
* Just use the projection theorem in N dimensions. */
auto w = vertices[i] - vertices[i0];
float dist = abs(dot(normal, w));
printf(" · distance to opposite hyperplane: %f\n", dist);
#endif
}
printf("\n");
}

/* A user-provided random seed. Defaults to zero. */


Notiek ielāde…
Atcelt
Saglabāt