diff --git a/src/math/real.cpp b/src/math/real.cpp index 7a50ddbd..6a207cf0 100644 --- a/src/math/real.cpp +++ b/src/math/real.cpp @@ -681,14 +681,14 @@ template<> real inverse(real const &x) } /* Use the system's float inversion to approximate 1/x */ - union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f }; - v.x |= x.m_mantissa[0] >> 9; - v.f = 1.0f / v.f; + union { float f; uint32_t x; } u = { 1.0f }; + u.x |= x.m_mantissa[0] >> 9; + u.f = 1.0f / u.f; ret.m_mantissa.resize(x.m_mantissa.count()); - ret.m_mantissa[0] = v.x << 9; + ret.m_mantissa[0] = u.x << 9; ret.m_sign = x.m_sign; - ret.m_exponent = -x.m_exponent + (v.x >> 23) - (u.x >> 23); + ret.m_exponent = -x.m_exponent + (u.x >> 23) - 0x7f; /* FIXME: 1+log2(BIGIT_COUNT) steps of Newton-Raphson seems to be enough for * convergence, but this hasn't been checked seriously. */ @@ -712,26 +712,27 @@ template<> real sqrt(real const &x) return ret; } + int tweak = x.m_exponent & 1; + /* Use the system's float inversion to approximate 1/sqrt(x). First * we construct a float in the [1..4[ range that has roughly the same * mantissa as our real. Its exponent is 0 or 1, depending on the * parity of x’s exponent. The final exponent is 0, -1 or -2. We use * the final exponent and final mantissa to pre-fill the result. */ - union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f }; - v.x -= ((x.m_exponent & 1) ^ 1) << 23; - v.x |= x.m_mantissa[0] >> 9; - v.f = 1.0f / sqrtf(v.f); + union { float f; uint32_t x; } u = { 1.0f }; + u.x += tweak << 23; + u.x |= x.m_mantissa[0] >> 9; + u.f = 1.0f / sqrtf(u.f); real ret; ret.m_mantissa.resize(x.m_mantissa.count()); - ret.m_mantissa[0] = v.x << 9; + ret.m_mantissa[0] = u.x << 9; - /* FIXME FIXME FIXME: this is broken */ - ret.m_exponent = -x.m_exponent / 2 + (v.x >> 23) - (u.x >> 23); + ret.m_exponent = -(x.m_exponent - tweak) / 2 + (u.x >> 23) - 0x7f; /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough for * convergence, but this hasn't been checked seriously. */ - for (int i = 1; i <= 1024 * x.bigit_count(); i *= 2) + for (int i = 1; i <= x.bigit_count(); i *= 2) { ret = ret * (real::R_3() - ret * ret * x); --ret.m_exponent; @@ -746,20 +747,24 @@ template<> real cbrt(real const &x) if (!x.m_mantissa.count()) return x; + int tweak = x.m_exponent % 3; + if (tweak < 0) + tweak += 3; + /* Use the system's float inversion to approximate cbrt(x). First * we construct a float in the [1..8[ range that has roughly the same * mantissa as our real. Its exponent is 0, 1 or 2, depending on the * value of x. The final exponent is 0 or 1 (special case). We use * the final exponent and final mantissa to pre-fill the result. */ - union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f }; - v.x += (x.m_exponent % 3) << 23; - v.x |= x.m_mantissa[0] >> 9; - v.f = powf(v.f, 0.33333333333333333f); + union { float f; uint32_t x; } u = { 1.0f }; + u.x += tweak << 23; + u.x |= x.m_mantissa[0] >> 9; + u.f = powf(u.f, 0.33333333333333333f); real ret; ret.m_mantissa.resize(x.m_mantissa.count()); - ret.m_mantissa[0] = v.x << 9; - ret.m_exponent = x.m_exponent / 3 + (v.x >> 23) - (u.x >> 23); + ret.m_mantissa[0] = u.x << 9; + ret.m_exponent = (x.m_exponent - tweak) / 3 + (u.x >> 23) - 0x7f; ret.m_sign = x.m_sign; /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough