Pārlūkot izejas kodu

test: the Remez algorithm is now almost functional.

legacy
Sam Hocevar sam pirms 13 gadiem
vecāks
revīzija
93162ee19b
1 mainītis faili ar 226 papildinājumiem un 35 dzēšanām
  1. +226
    -35
      test/math/remez.cpp

+ 226
- 35
test/math/remez.cpp Parādīt failu

@@ -19,23 +19,19 @@
using namespace lol;

/* The order of the approximation we're looking for */
static int const ORDER = 3;
static int const ORDER = 4;

/* The function we want to approximate */
double myfun(double x)
{
return exp(x);
}

real myfun(real const &x)
{
return exp(x);
static real const one = 1.0;
return cos(x) - one;
//return exp(x);
}

/* Naive matrix inversion */
template<int N> class Matrix
template<int N> struct Matrix
{
public:
inline Matrix() {}

Matrix(real x)
@@ -53,7 +49,7 @@ public:
Matrix a = *this, b(real(1.0));

/* Inversion method: iterate through all columns and make sure
* all the terms are zero except on the diagonal where it is one */
* all the terms are 1 on the diagonal and 0 everywhere else */
for (int i = 0; i < N; i++)
{
/* If the expected coefficient is zero, add one of
@@ -117,7 +113,7 @@ public:
static int cheby[ORDER + 1][ORDER + 1];

/* Fill the Chebyshev tables */
static void make_table()
static void cheby_init()
{
memset(cheby, 0, sizeof(cheby));

@@ -132,54 +128,249 @@ static void make_table()
}
}

int main(int argc, char **argv)
static void cheby_coeff(real *coeff, real *bn)
{
for (int i = 0; i < ORDER + 1; i++)
{
bn[i] = 0;
for (int j = 0; j < ORDER + 1; j++)
if (cheby[j][i])
bn[i] += coeff[j] * (real)cheby[j][i];
}
}

static real cheby_eval(real *coeff, real const &x)
{
make_table();
real ret = 0.0, xn = 1.0;

/* We start with ORDER+1 points and their images through myfun() */
real xn[ORDER + 1];
for (int i = 0; i < ORDER + 1; i++)
{
real mul = 0;
for (int j = 0; j < ORDER + 1; j++)
if (cheby[j][i])
mul += coeff[j] * (real)cheby[j][i];
ret += mul * xn;
xn *= x;
}

return ret;
}

static void remez_init(real *coeff, real *zeroes)
{
/* Pick up x_i where error will be 0 and compute f(x_i) */
real fxn[ORDER + 1];
for (int i = 0; i < ORDER + 1; i++)
{
//xn[i] = real(2 * i - ORDER) / real(ORDER + 1);
xn[i] = real(2 * i - ORDER + 1) / real(ORDER - 1);
fxn[i] = myfun(xn[i]);
zeroes[i] = real(2 * i - ORDER) / real(ORDER + 1);
fxn[i] = myfun(zeroes[i]);
}

/* We build a matrix of Chebishev evaluations: one row per point
* in our array, and column i is the evaluation of the ith order
* polynomial. */
/* We build a matrix of Chebishev evaluations: row i contains the
* evaluations of x_i for polynomial order n = 0, 1, ... */
Matrix<ORDER + 1> mat;
for (int j = 0; j < ORDER + 1; j++)
for (int i = 0; i < ORDER + 1; i++)
{
/* Compute the powers of x_j */
/* Compute the powers of x_i */
real powers[ORDER + 1];
powers[0] = 1.0;
for (int i = 1; i < ORDER + 1; i++)
powers[i] = powers[i - 1] * xn[j];
for (int n = 1; n < ORDER + 1; n++)
powers[n] = powers[n - 1] * zeroes[i];

/* Compute the Chebishev evaluations at x_j */
for (int i = 0; i < ORDER + 1; i++)
/* Compute the Chebishev evaluations at x_i */
for (int n = 0; n < ORDER + 1; n++)
{
real sum = 0.0;
for (int k = 0; k < ORDER + 1; k++)
if (cheby[i][k])
sum += real(cheby[i][k]) * powers[k];
mat.m[j][i] = sum;
if (cheby[n][k])
sum += real(cheby[n][k]) * powers[k];
mat.m[i][n] = sum;
}
}

/* Invert the matrix and build interpolation coefficients */
/* Solve the system */
mat = mat.inv();
real an[ORDER + 1];

/* Compute interpolation coefficients */
for (int j = 0; j < ORDER + 1; j++)
{
an[j] = 0;
coeff[j] = 0;
for (int i = 0; i < ORDER + 1; i++)
an[j] += mat.m[j][i] * fxn[i];
an[j].print(10);
coeff[j] += mat.m[j][i] * fxn[i];
}
}

static void remez_findzeroes(real *coeff, real *zeroes, real *control)
{
/* FIXME: this is fake for now */
for (int i = 0; i < ORDER + 1; i++)
{
real a = control[i];
real ea = cheby_eval(coeff, a) - myfun(a);
real b = control[i + 1];
real eb = cheby_eval(coeff, b) - myfun(b);

while (fabs(a - b) > (real)1e-140)
{
real c = (a + b) * (real)0.5;
real ec = cheby_eval(coeff, c) - myfun(c);

if ((ea < (real)0 && ec < (real)0)
|| (ea > (real)0 && ec > (real)0))
{
a = c;
ea = ec;
}
else
{
b = c;
eb = ec;
}
}

zeroes[i] = a;
}
}

static void remez_finderror(real *coeff, real *zeroes, real *control)
{
real final = 0;

for (int i = 0; i < ORDER + 2; i++)
{
real a = -1, b = 1;
if (i > 0)
a = zeroes[i - 1];
if (i < ORDER + 1)
b = zeroes[i];

printf("Error for [%g..%g]: ", (double)a, (double)b);
for (;;)
{
real c = a, delta = (b - a) / (real)10.0;
real maxerror = 0;
int best = -1;
for (int k = 0; k <= 10; k++)
{
real e = fabs(cheby_eval(coeff, c) - myfun(c));
if (e > maxerror)
{
maxerror = e;
best = k;
}
c += delta;
}

if (best == 0)
best = 1;
if (best == 10)
best = 9;

b = a + (real)(best + 1) * delta;
a = a + (real)(best - 1) * delta;

if (b - a < (real)1e-15)
{
if (maxerror > final)
final = maxerror;
control[i] = (a + b) * (real)0.5;
printf("%g (in %g)\n", (double)maxerror, (double)control[i]);
break;
}
}
}

printf("Final error: %g\n", (double)final);
}

static void remez_step(real *coeff, real *control)
{
/* Pick up x_i where error will be 0 and compute f(x_i) */
real fxn[ORDER + 2];
for (int i = 0; i < ORDER + 2; i++)
fxn[i] = myfun(control[i]);

/* We build a matrix of Chebishev evaluations: row i contains the
* evaluations of x_i for polynomial order n = 0, 1, ... */
Matrix<ORDER + 2> mat;
for (int i = 0; i < ORDER + 2; i++)
{
/* Compute the powers of x_i */
real powers[ORDER + 1];
powers[0] = 1.0;
for (int n = 1; n < ORDER + 1; n++)
powers[n] = powers[n - 1] * control[i];

/* Compute the Chebishev evaluations at x_i */
for (int n = 0; n < ORDER + 1; n++)
{
real sum = 0.0;
for (int k = 0; k < ORDER + 1; k++)
if (cheby[n][k])
sum += real(cheby[n][k]) * powers[k];
mat.m[i][n] = sum;
}
mat.m[i][ORDER + 1] = (real)(-1 + (i & 1) * 2);
}

/* Solve the system */
mat = mat.inv();

/* Compute interpolation coefficients */
for (int j = 0; j < ORDER + 1; j++)
{
coeff[j] = 0;
for (int i = 0; i < ORDER + 2; i++)
coeff[j] += mat.m[j][i] * fxn[i];
}

/* Compute the error */
real error = 0;
for (int i = 0; i < ORDER + 2; i++)
error += mat.m[ORDER + 1][i] * fxn[i];
}

int main(int argc, char **argv)
{
cheby_init();

/* ORDER + 1 chebyshev coefficients and 1 error value */
real coeff[ORDER + 2];
/* ORDER + 1 zeroes of the error function */
real zeroes[ORDER + 1];
/* ORDER + 2 control points */
real control[ORDER + 2];

real bn[ORDER + 1];

remez_init(coeff, zeroes);

cheby_coeff(coeff, bn);
for (int j = 0; j < ORDER + 1; j++)
printf("%s%12.10gx^%i", j ? "+" : "", (double)bn[j], j);
printf("\n");

for (int n = 0; n < 200; n++)
{
remez_finderror(coeff, zeroes, control);
remez_step(coeff, control);

cheby_coeff(coeff, bn);
for (int j = 0; j < ORDER + 1; j++)
printf("%s%12.10gx^%i", j ? "+" : "", (double)bn[j], j);
printf("\n");

remez_findzeroes(coeff, zeroes, control);
}

remez_finderror(coeff, zeroes, control);
remez_step(coeff, control);

cheby_coeff(coeff, bn);
for (int j = 0; j < ORDER + 1; j++)
printf("%s%12.10gx^%i", j ? "+" : "", (double)bn[j], j);
printf("\n");

return EXIT_SUCCESS;
}


Notiek ielāde…
Atcelt
Saglabāt