@@ -20,8 +20,6 @@ | |||||
#include <functional> | #include <functional> | ||||
// #define ENABLE_3SOLVE | |||||
// #include <iostream> | |||||
namespace lol | namespace lol | ||||
{ | { | ||||
@@ -111,14 +109,9 @@ struct polynomial | |||||
array<T> roots() const | array<T> roots() const | ||||
{ | { | ||||
/* For now we can only solve polynomials of degrees 0, 1 or 2. */ | /* For now we can only solve polynomials of degrees 0, 1, 2 or 3. */ | ||||
#ifdef ENABLE_3SOLVE | |||||
ASSERT(degree() >= 0 && degree() <= 3, | ASSERT(degree() >= 0 && degree() <= 3, | ||||
"roots() called on polynomial of degree %d", degree()); | "roots() called on polynomial of degree %d", degree()); | ||||
#else | |||||
ASSERT(degree() >= 0 && degree() <= 2, | |||||
"roots() called on polynomial of degree %d", degree()); | |||||
#endif | |||||
if (degree() == 0) | if (degree() == 0) | ||||
{ | { | ||||
@@ -156,7 +149,6 @@ struct polynomial | |||||
return array<T> { -k }; | return array<T> { -k }; | ||||
} | } | ||||
} | } | ||||
#ifdef ENABLE_3SOLVE | |||||
else if (degree() == 3) | else if (degree() == 3) | ||||
{ | { | ||||
/* p(x) = ax³ + bx² + cx + d */ | /* p(x) = ax³ + bx² + cx + d */ | ||||
@@ -226,21 +218,15 @@ struct polynomial | |||||
pow(v3_norm, 1.f / 3.f) * cos(v_angle); | pow(v3_norm, 1.f / 3.f) * cos(v_angle); | ||||
} | } | ||||
if (delta < 0) | if (delta < 0) // 3 real solutions | ||||
return array<T> {solutions[0] - k, solutions[1] - k, solutions[2] - k}; | return array<T> {solutions[0] - k, solutions[1] - k, solutions[2] - k}; | ||||
else | else if (delta > 0) // 1 real solution | ||||
{ | return array<T> {solutions[0] - k}; | ||||
if (u3_norm > 0) | else if (u3_norm > 0) // 2 real solutions | ||||
{ | return array<T> {solutions[0] - k, solutions[1] - k}; | ||||
return array<T> {solutions[0] - k, solutions[1] - k}; | else // one triple solution | ||||
} | return array<T> {solutions[0] - k}; | ||||
else | |||||
{ | |||||
return array<T> {solutions[0] - k}; | |||||
} | |||||
} | |||||
} | } | ||||
#endif | |||||
/* It is an error to reach this point. */ | /* It is an error to reach this point. */ | ||||
ASSERT(false); | ASSERT(false); | ||||
@@ -272,13 +272,13 @@ lolunit_declare_fixture(PolynomialTest) | |||||
lolunit_assert_equal(roots2[1], 7.f); | lolunit_assert_equal(roots2[1], 7.f); | ||||
} | } | ||||
#ifdef ENABLE_3SOLVE | |||||
lolunit_declare_test(RootsDegree3TripleSolution) | lolunit_declare_test(RootsDegree3TripleSolution) | ||||
{ | { | ||||
polynomial<float> p { 1.f, 3.f, 3.f, 1.f }; | polynomial<float> p { 1.f, 3.f, 3.f, 1.f }; | ||||
auto roots1 = p.roots(); | auto roots1 = p.roots(); | ||||
lolunit_assert_equal(roots1.count(), 3); | lolunit_assert_equal(roots1.count(), 1); | ||||
lolunit_assert_doubles_equal(roots1[0], -1, 0); | |||||
} | } | ||||
lolunit_declare_test(RootsDegree3DoubleSolution) | lolunit_declare_test(RootsDegree3DoubleSolution) | ||||
@@ -286,7 +286,11 @@ lolunit_declare_fixture(PolynomialTest) | |||||
polynomial<float> p { 2.f, 5.f, 4.f, 1.f }; | polynomial<float> p { 2.f, 5.f, 4.f, 1.f }; | ||||
auto roots1 = p.roots(); | auto roots1 = p.roots(); | ||||
// Should have 2 solutions only, but precision leads to 3 solutions | |||||
lolunit_assert_equal(roots1.count(), 3); | lolunit_assert_equal(roots1.count(), 3); | ||||
lolunit_assert_doubles_equal(roots1[0], -1, 1e-3); | |||||
lolunit_assert_doubles_equal(roots1[1], -2, 1e-6); | |||||
lolunit_assert_doubles_equal(roots1[2], -1, 1e-3); | |||||
} | } | ||||
lolunit_declare_test(RootsDegree3SingleSolutions) | lolunit_declare_test(RootsDegree3SingleSolutions) | ||||
@@ -295,8 +299,10 @@ lolunit_declare_fixture(PolynomialTest) | |||||
auto roots1 = p.roots(); | auto roots1 = p.roots(); | ||||
lolunit_assert_equal(roots1.count(), 3); | lolunit_assert_equal(roots1.count(), 3); | ||||
lolunit_assert_doubles_equal(roots1[0], -1, 1e-8); | |||||
lolunit_assert_doubles_equal(roots1[1], -3, 1e-8); | |||||
lolunit_assert_doubles_equal(roots1[2], -2, 1e-8); | |||||
} | } | ||||
#endif | |||||
lolunit_declare_test(Chebyshev) | lolunit_declare_test(Chebyshev) | ||||
{ | { | ||||