| @@ -15,7 +15,8 @@ | |||
| namespace lol | |||
| { | |||
| template<int N /* Dimension of the space */, typename T = float /* floating type used for interpolation */> | |||
| template<int N, /* Dimension of the space */ | |||
| typename T = float> /* Interpolated type */ | |||
| class simplex_interpolator | |||
| { | |||
| public: | |||
| @@ -35,7 +36,7 @@ public: | |||
| inline T Interp(vec_t<T, N> position) const | |||
| { | |||
| // Computing position in simplex referential | |||
| vec_t<T, N> simplex_position = this->ToSimplexRef(position); | |||
| vec_t<T, N> simplex_position = m_base_inverse * position; | |||
| // Retrieving the closest floor point and decimals | |||
| vec_t<int, N> floor_point; | |||
| @@ -53,7 +54,9 @@ public: | |||
| protected: | |||
| inline T LastInterp(vec_t<int, N> const & floor_point, vec_t<T, N> const & decimal_point, int const & sign) const | |||
| inline T LastInterp(vec_t<int, N> const & floor_point, | |||
| vec_t<T, N> const & decimal_point, | |||
| int const & sign) const | |||
| { | |||
| T result = 0; | |||
| T floor_coeff = 0; | |||
| @@ -118,35 +121,25 @@ protected: | |||
| floor_point[i] = this->Mod(floor_point[i], i); | |||
| } | |||
| inline vec_t<T, N> ToSimplexRef(vec_t<T, N> const & position) const | |||
| { | |||
| vec_t<T, N> result; | |||
| for (int i = 0 ; i < N ; ++i) | |||
| for (int j = 0 ; j < N ; ++j) | |||
| result[i] += this->m_base_inverse[j][i] * position[j]; | |||
| return result; | |||
| } | |||
| inline void InitBase() | |||
| { | |||
| this->m_base.SetSize(vec_t<int, 2>{N, N}); | |||
| this->m_base_inverse.SetSize(vec_t<int, 2>{N, N}); | |||
| for (int i = 0 ; i < N ; ++i) | |||
| for (int i = 0; i < N; ++i) | |||
| { | |||
| for (int j = i ; j < N ; ++j) | |||
| for (int j = 0; j < i; ++j) | |||
| { | |||
| m_base[j][i] = 0; | |||
| m_base_inverse[j][i] = 0; | |||
| } | |||
| for (int j = i; j < N; ++j) | |||
| { | |||
| this->m_base[j][i] = sqrt((i+2)/((float)(2*i+2))) / (j > i ? i+2 : 1); | |||
| this->m_base_inverse[j][i] = sqrt((2*j+2) / ((float)(j+2))) * (j > i ? (-1 / (float)(j+1)) : 1); | |||
| m_base[j][i] = sqrt((i+2)/((float)(2*i+2))) / (j > i ? i+2 : 1); | |||
| m_base_inverse[j][i] = sqrt((2*j+2) / ((float)(j+2))) * (j > i ? (-1 / (float)(j+1)) : 1); | |||
| } | |||
| } | |||
| } | |||
| arraynd<2, T> m_base; | |||
| arraynd<2, T> m_base_inverse; | |||
| mat_t<T, N, N> m_base, m_base_inverse; | |||
| arraynd<N, T> m_samples; | |||
| }; | |||