Procházet zdrojové kódy

Merge branch 'real_refactor'

legacy
Sam Hocevar před 7 roky
rodič
revize
a57b9f859a
5 změnil soubory, kde provedl 468 přidání a 440 odebrání
  1. +20
    -0
      src/lol/base/array.h
  2. +2
    -2
      src/lol/base/types.h
  3. +143
    -154
      src/lol/math/real.h
  4. +279
    -283
      src/math/real.cpp
  5. +24
    -1
      src/t/math/real.cpp

+ 20
- 0
src/lol/base/array.h Zobrazit soubor

@@ -141,6 +141,26 @@ public:
return ret;
}

bool operator==(ARRAY const &that) const
{
if (m_count != that.m_count)
return false;
for (ptrdiff_t i = 0; i < m_count; ++i)
if (!(m_data[i] == that[i]))
return false;
return true;
}

bool operator!=(ARRAY const &that) const
{
if (m_count == that.m_count)
return false;
for (ptrdiff_t i = 0; i < m_count; ++i)
if (!(m_data[i] != that[i]))
return false;
return true;
}

inline element_t& operator[](ptrdiff_t n)
{
/* Allow array[0] even if size is zero so that people can


+ 2
- 2
src/lol/base/types.h Zobrazit soubor

@@ -20,8 +20,8 @@ typedef long double ldouble;

/* The “real” type used for real numbers. It’s a specialisation of the
* “Real” template class. */
template<int N> class Real;
typedef Real<16> real;
template<typename T> class Real;
typedef Real<uint32_t> real;

/* The “half” type used for 16-bit floating point numbers. */
class half;


+ 143
- 154
src/lol/math/real.h Zobrazit soubor

@@ -35,14 +35,11 @@ namespace lol
* avoid accidental implicit conversions ("int x = 1; sqrt(x)" will never
* call real::sqrt).
*/
template<int N>
template<typename T>
class LOL_ATTR_NODISCARD Real
{
public:
Real();
Real(Real<N> const &x);
Real const &operator =(Real<N> const &x);
~Real();

Real(float f);
Real(double f);
@@ -60,82 +57,82 @@ public:
LOL_ATTR_NODISCARD operator int() const;
LOL_ATTR_NODISCARD operator unsigned int() const;

Real<N> operator +() const;
Real<N> operator -() const;
Real<N> operator +(Real<N> const &x) const;
Real<N> operator -(Real<N> const &x) const;
Real<N> operator *(Real<N> const &x) const;
Real<N> operator /(Real<N> const &x) const;
Real<N> const &operator +=(Real<N> const &x);
Real<N> const &operator -=(Real<N> const &x);
Real<N> const &operator *=(Real<N> const &x);
Real<N> const &operator /=(Real<N> const &x);
LOL_ATTR_NODISCARD bool operator ==(Real<N> const &x) const;
LOL_ATTR_NODISCARD bool operator !=(Real<N> const &x) const;
LOL_ATTR_NODISCARD bool operator <(Real<N> const &x) const;
LOL_ATTR_NODISCARD bool operator >(Real<N> const &x) const;
LOL_ATTR_NODISCARD bool operator <=(Real<N> const &x) const;
LOL_ATTR_NODISCARD bool operator >=(Real<N> const &x) const;
Real<T> operator +() const;
Real<T> operator -() const;
Real<T> operator +(Real<T> const &x) const;
Real<T> operator -(Real<T> const &x) const;
Real<T> operator *(Real<T> const &x) const;
Real<T> operator /(Real<T> const &x) const;
Real<T> const &operator +=(Real<T> const &x);
Real<T> const &operator -=(Real<T> const &x);
Real<T> const &operator *=(Real<T> const &x);
Real<T> const &operator /=(Real<T> const &x);
LOL_ATTR_NODISCARD bool operator ==(Real<T> const &x) const;
LOL_ATTR_NODISCARD bool operator !=(Real<T> const &x) const;
LOL_ATTR_NODISCARD bool operator <(Real<T> const &x) const;
LOL_ATTR_NODISCARD bool operator >(Real<T> const &x) const;
LOL_ATTR_NODISCARD bool operator <=(Real<T> const &x) const;
LOL_ATTR_NODISCARD bool operator >=(Real<T> const &x) const;

LOL_ATTR_NODISCARD bool operator !() const;
LOL_ATTR_NODISCARD operator bool() const;

/* Comparison functions */
template<int K> friend Real<K> min(Real<K> const &a, Real<K> const &b);
template<int K> friend Real<K> max(Real<K> const &a, Real<K> const &b);
template<int K> friend Real<K> clamp(Real<K> const &x,
Real<K> const &a, Real<K> const &b);
template<typename U> friend Real<U> min(Real<U> const &a, Real<U> const &b);
template<typename U> friend Real<U> max(Real<U> const &a, Real<U> const &b);
template<typename U> friend Real<U> clamp(Real<U> const &x,
Real<U> const &a, Real<U> const &b);

/* Trigonometric functions */
template<int K> friend Real<K> sin(Real<K> const &x);
template<int K> friend Real<K> cos(Real<K> const &x);
template<int K> friend Real<K> tan(Real<K> const &x);
template<int K> friend Real<K> asin(Real<K> const &x);
template<int K> friend Real<K> acos(Real<K> const &x);
template<int K> friend Real<K> atan(Real<K> const &x);
template<int K> friend Real<K> atan2(Real<K> const &y, Real<K> const &x);
template<typename U> friend Real<U> sin(Real<U> const &x);
template<typename U> friend Real<U> cos(Real<U> const &x);
template<typename U> friend Real<U> tan(Real<U> const &x);
template<typename U> friend Real<U> asin(Real<U> const &x);
template<typename U> friend Real<U> acos(Real<U> const &x);
template<typename U> friend Real<U> atan(Real<U> const &x);
template<typename U> friend Real<U> atan2(Real<U> const &y, Real<U> const &x);

/* Hyperbolic functions */
template<int K> friend Real<K> sinh(Real<K> const &x);
template<int K> friend Real<K> cosh(Real<K> const &x);
template<int K> friend Real<K> tanh(Real<K> const &x);
template<typename U> friend Real<U> sinh(Real<U> const &x);
template<typename U> friend Real<U> cosh(Real<U> const &x);
template<typename U> friend Real<U> tanh(Real<U> const &x);

/* Exponential and logarithmic functions */
template<int K> friend Real<K> exp(Real<K> const &x);
template<int K> friend Real<K> exp2(Real<K> const &x);
template<int K> friend Real<K> log(Real<K> const &x);
template<int K> friend Real<K> log2(Real<K> const &x);
template<int K> friend Real<K> log10(Real<K> const &x);
template<int K> friend Real<K> frexp(Real<K> const &x, int *exp);
template<int K> friend Real<K> ldexp(Real<K> const &x, int exp);
template<int K> friend Real<K> modf(Real<K> const &x, Real<K> *iptr);
template<int K> friend Real<K> nextafter(Real<K> const &x, Real<K> const &y);
template<typename U> friend Real<U> exp(Real<U> const &x);
template<typename U> friend Real<U> exp2(Real<U> const &x);
template<typename U> friend Real<U> log(Real<U> const &x);
template<typename U> friend Real<U> log2(Real<U> const &x);
template<typename U> friend Real<U> log10(Real<U> const &x);
template<typename U> friend Real<U> frexp(Real<U> const &x, int64_t *exp);
template<typename U> friend Real<U> ldexp(Real<U> const &x, int64_t exp);
template<typename U> friend Real<U> modf(Real<U> const &x, Real<U> *iptr);
template<typename U> friend Real<U> nextafter(Real<U> const &x, Real<U> const &y);

/* Power functions */
template<int K> friend Real<K> inverse(Real<K> const &x);
template<int K> friend Real<K> sqrt(Real<K> const &x);
template<int K> friend Real<K> cbrt(Real<K> const &x);
template<int K> friend Real<K> pow(Real<K> const &x, Real<K> const &y);
template<int K> friend Real<K> gamma(Real<K> const &x);
template<typename U> friend Real<U> inverse(Real<U> const &x);
template<typename U> friend Real<U> sqrt(Real<U> const &x);
template<typename U> friend Real<U> cbrt(Real<U> const &x);
template<typename U> friend Real<U> pow(Real<U> const &x, Real<U> const &y);
template<typename U> friend Real<U> gamma(Real<U> const &x);

/* Rounding, absolute value, remainder etc. */
template<int K> friend Real<K> ceil(Real<K> const &x);
template<int K> friend Real<K> copysign(Real<K> const &x, Real<K> const &y);
template<int K> friend Real<K> floor(Real<K> const &x);
template<int K> friend Real<K> fabs(Real<K> const &x);
template<int K> friend Real<K> round(Real<K> const &x);
template<int K> friend Real<K> fmod(Real<K> const &x, Real<K> const &y);
template<typename U> friend Real<U> ceil(Real<U> const &x);
template<typename U> friend Real<U> copysign(Real<U> const &x, Real<U> const &y);
template<typename U> friend Real<U> floor(Real<U> const &x);
template<typename U> friend Real<U> fabs(Real<U> const &x);
template<typename U> friend Real<U> round(Real<U> const &x);
template<typename U> friend Real<U> fmod(Real<U> const &x, Real<U> const &y);

/* Functions inherited from GLSL */
template<int K> friend Real<K> abs(Real<K> const &x);
template<int K> friend Real<K> fract(Real<K> const &x);
template<int K> friend Real<K> degrees(Real<K> const &x);
template<int K> friend Real<K> radians(Real<K> const &x);
template<typename U> friend Real<U> abs(Real<U> const &x);
template<typename U> friend Real<U> fract(Real<U> const &x);
template<typename U> friend Real<U> degrees(Real<U> const &x);
template<typename U> friend Real<U> radians(Real<U> const &x);

/* Additional functions */
template<int K> friend Real<K> franke(Real<K> const &x, Real<K> const &y);
template<int K> friend Real<K> peaks(Real<K> const &x, Real<K> const &y);
template<typename U> friend Real<U> franke(Real<U> const &x, Real<U> const &y);
template<typename U> friend Real<U> peaks(Real<U> const &x, Real<U> const &y);

void xprint() const;
void print(int ndigits = 150) const;
@@ -144,23 +141,23 @@ public:

/* Additional operators using base C++ types */
#define __LOL_REAL_OP_HELPER_GENERIC(op, type) \
inline Real<N> operator op(type x) const { return *this op (Real<N>)x; } \
inline Real<N> const &operator op##=(type x) { return *this = (*this op x); }
inline Real<T> operator op(type x) const { return *this op (Real<T>)x; } \
inline Real<T> const &operator op##=(type x) { return *this = (*this op x); }
#define __LOL_REAL_OP_HELPER_FASTMULDIV(op, type) \
inline Real<N> operator op(type x) const \
inline Real<T> operator op(type x) const \
{ \
Real<N> tmp = *this; return tmp op##= x; \
Real<T> tmp = *this; return tmp op##= x; \
} \
inline Real<N> const &operator op##=(type x) \
inline Real<T> const &operator op##=(type x) \
{ \
/* If multiplying or dividing by a power of two, take a shortcut */ \
if ((m_signexp << 1) && x && !(x & (x - 1))) \
if (m_sign && m_exponent && x && !(x & (x - 1))) \
{ \
while (x >>= 1) \
m_signexp += 1 op 2 - 1; /* 1 if op is *, -1 if op is / */ \
m_exponent += 1 op 2 - 1; /* 1 if op is *, -1 if op is / */ \
} \
else \
*this = *this op (Real<N>)x; \
*this = *this op (Real<T>)x; \
return *this; \
}
#define __LOL_REAL_OP_HELPER_INT(type) \
@@ -181,59 +178,51 @@ public:
__LOL_REAL_OP_HELPER_FLOAT(long double)

/* Constants */
static Real<N> const& R_0();
static Real<N> const& R_1();
static Real<N> const& R_2();
static Real<N> const& R_3();
static Real<N> const& R_4();
static Real<N> const& R_10();
static Real<N> const& R_E();
static Real<N> const& R_LOG2E();
static Real<N> const& R_LOG10E();
static Real<N> const& R_LN2();
static Real<N> const& R_LN10();
static Real<N> const& R_PI();
static Real<N> const& R_PI_2();
static Real<N> const& R_PI_3();
static Real<N> const& R_PI_4();
static Real<N> const& R_TAU();
static Real<N> const& R_1_PI();
static Real<N> const& R_2_PI();
static Real<N> const& R_2_SQRTPI();
static Real<N> const& R_SQRT2();
static Real<N> const& R_SQRT3();
static Real<N> const& R_SQRT1_2();
static Real<N> const& R_MIN();
static Real<N> const& R_MAX();
static Real<T> const& R_0();
static Real<T> const& R_1();
static Real<T> const& R_2();
static Real<T> const& R_3();
static Real<T> const& R_4();
static Real<T> const& R_10();
static Real<T> const& R_E();
static Real<T> const& R_LOG2E();
static Real<T> const& R_LOG10E();
static Real<T> const& R_LN2();
static Real<T> const& R_LN10();
static Real<T> const& R_PI();
static Real<T> const& R_PI_2();
static Real<T> const& R_PI_3();
static Real<T> const& R_PI_4();
static Real<T> const& R_TAU();
static Real<T> const& R_1_PI();
static Real<T> const& R_2_PI();
static Real<T> const& R_2_SQRTPI();
static Real<T> const& R_SQRT2();
static Real<T> const& R_SQRT3();
static Real<T> const& R_SQRT1_2();
static Real<T> const& R_MIN();
static Real<T> const& R_MAX();

private:
typedef uint32_t bigit_t;
typedef uint32_t signexp_t;
typedef T bigit_t;
typedef int64_t exponent_t;

bigit_t *m_mantissa;
signexp_t m_signexp;
array<T> m_mantissa;
exponent_t m_exponent;
bool m_sign, m_nan, m_inf;

public:
/* XXX: changing this requires tuning real::fres (the number of
* Newton-Raphson iterations) and real::print (the number of printed
* digits) */
static int const BIGIT_COUNT = N;
static int const BIGIT_BITS = 8 * sizeof(bigit_t);
static int const TOTAL_BITS = BIGIT_COUNT * BIGIT_BITS;

static int const EXPONENT_BITS = 8 * sizeof(signexp_t) - 1;
static int const EXPONENT_BIAS = (1 << (EXPONENT_BITS - 1)) - 1;
static inline int bigit_bits() { return 8 * sizeof(bigit_t); }
inline int bigit_count() const { return m_mantissa.count(); }
inline int total_bits() const { return bigit_count() * bigit_bits(); }
};

/*
* Mandatory forward declarations of template specialisations
*/
template<> real::Real();
template<> real::Real(real const &x);
template<> real const &real::operator =(real const &x);
template<> real::~Real();
template<> real::Real(float f);
template<> real::Real(double f);
template<> real::Real(long double f);
@@ -267,47 +256,47 @@ template<> LOL_ATTR_NODISCARD bool real::operator >=(real const &x) const;
template<> LOL_ATTR_NODISCARD bool real::operator !() const;
template<> LOL_ATTR_NODISCARD real::operator bool() const;

template<int K> Real<K> min(Real<K> const &a, Real<K> const &b);
template<int K> Real<K> max(Real<K> const &a, Real<K> const &b);
template<int K> Real<K> clamp(Real<K> const &x,
Real<K> const &a, Real<K> const &b);
template<int K> Real<K> sin(Real<K> const &x);
template<int K> Real<K> cos(Real<K> const &x);
template<int K> Real<K> tan(Real<K> const &x);
template<int K> Real<K> asin(Real<K> const &x);
template<int K> Real<K> acos(Real<K> const &x);
template<int K> Real<K> atan(Real<K> const &x);
template<int K> Real<K> atan2(Real<K> const &y, Real<K> const &x);
template<int K> Real<K> sinh(Real<K> const &x);
template<int K> Real<K> cosh(Real<K> const &x);
template<int K> Real<K> tanh(Real<K> const &x);
template<int K> Real<K> exp(Real<K> const &x);
template<int K> Real<K> exp2(Real<K> const &x);
template<int K> Real<K> log(Real<K> const &x);
template<int K> Real<K> log2(Real<K> const &x);
template<int K> Real<K> log10(Real<K> const &x);
template<int K> Real<K> frexp(Real<K> const &x, int *exp);
template<int K> Real<K> ldexp(Real<K> const &x, int exp);
template<int K> Real<K> modf(Real<K> const &x, Real<K> *iptr);
template<int K> Real<K> nextafter(Real<K> const &x, Real<K> const &y);
template<int K> Real<K> inverse(Real<K> const &x);
template<int K> Real<K> sqrt(Real<K> const &x);
template<int K> Real<K> cbrt(Real<K> const &x);
template<int K> Real<K> pow(Real<K> const &x, Real<K> const &y);
template<int K> Real<K> gamma(Real<K> const &x);
template<int K> Real<K> ceil(Real<K> const &x);
template<int K> Real<K> copysign(Real<K> const &x, Real<K> const &y);
template<int K> Real<K> floor(Real<K> const &x);
template<int K> Real<K> fabs(Real<K> const &x);
template<int K> Real<K> round(Real<K> const &x);
template<int K> Real<K> fmod(Real<K> const &x, Real<K> const &y);
template<int K> Real<K> abs(Real<K> const &x);
template<int K> Real<K> fract(Real<K> const &x);
template<int K> Real<K> degrees(Real<K> const &x);
template<int K> Real<K> radians(Real<K> const &x);
template<int K> Real<K> franke(Real<K> const &x, Real<K> const &y);
template<int K> Real<K> peaks(Real<K> const &x, Real<K> const &y);
template<typename U> Real<U> min(Real<U> const &a, Real<U> const &b);
template<typename U> Real<U> max(Real<U> const &a, Real<U> const &b);
template<typename U> Real<U> clamp(Real<U> const &x,
Real<U> const &a, Real<U> const &b);
template<typename U> Real<U> sin(Real<U> const &x);
template<typename U> Real<U> cos(Real<U> const &x);
template<typename U> Real<U> tan(Real<U> const &x);
template<typename U> Real<U> asin(Real<U> const &x);
template<typename U> Real<U> acos(Real<U> const &x);
template<typename U> Real<U> atan(Real<U> const &x);
template<typename U> Real<U> atan2(Real<U> const &y, Real<U> const &x);
template<typename U> Real<U> sinh(Real<U> const &x);
template<typename U> Real<U> cosh(Real<U> const &x);
template<typename U> Real<U> tanh(Real<U> const &x);
template<typename U> Real<U> exp(Real<U> const &x);
template<typename U> Real<U> exp2(Real<U> const &x);
template<typename U> Real<U> log(Real<U> const &x);
template<typename U> Real<U> log2(Real<U> const &x);
template<typename U> Real<U> log10(Real<U> const &x);
template<typename U> Real<U> frexp(Real<U> const &x, int64_t *exp);
template<typename U> Real<U> ldexp(Real<U> const &x, int64_t exp);
template<typename U> Real<U> modf(Real<U> const &x, Real<U> *iptr);
template<typename U> Real<U> nextafter(Real<U> const &x, Real<U> const &y);
template<typename U> Real<U> inverse(Real<U> const &x);
template<typename U> Real<U> sqrt(Real<U> const &x);
template<typename U> Real<U> cbrt(Real<U> const &x);
template<typename U> Real<U> pow(Real<U> const &x, Real<U> const &y);
template<typename U> Real<U> gamma(Real<U> const &x);
template<typename U> Real<U> ceil(Real<U> const &x);
template<typename U> Real<U> copysign(Real<U> const &x, Real<U> const &y);
template<typename U> Real<U> floor(Real<U> const &x);
template<typename U> Real<U> fabs(Real<U> const &x);
template<typename U> Real<U> round(Real<U> const &x);
template<typename U> Real<U> fmod(Real<U> const &x, Real<U> const &y);
template<typename U> Real<U> abs(Real<U> const &x);
template<typename U> Real<U> fract(Real<U> const &x);
template<typename U> Real<U> degrees(Real<U> const &x);
template<typename U> Real<U> radians(Real<U> const &x);
template<typename U> Real<U> franke(Real<U> const &x, Real<U> const &y);
template<typename U> Real<U> peaks(Real<U> const &x, Real<U> const &y);

template<> real min(real const &a, real const &b);
template<> real max(real const &a, real const &b);
@@ -328,8 +317,8 @@ template<> real exp2(real const &x);
template<> real log(real const &x);
template<> real log2(real const &x);
template<> real log10(real const &x);
template<> real frexp(real const &x, int *exp);
template<> real ldexp(real const &x, int exp);
template<> real frexp(real const &x, int64_t *exp);
template<> real ldexp(real const &x, int64_t exp);
template<> real modf(real const &x, real *iptr);
template<> real nextafter(real const &x, real const &y);
template<> real inverse(real const &x);


+ 279
- 283
src/math/real.cpp
Diff nebyl zobrazen, protože je příliš veliký
Zobrazit soubor


+ 24
- 1
src/t/math/real.cpp Zobrazit soubor

@@ -251,11 +251,34 @@ lolunit_declare_fixture(real_test)
/* 1 / 3 * 3 should be close to 1... check that it does not differ
* by more than 2^-k where k is the number of bits in the mantissa. */
real a = real::R_1() / real::R_3() * real::R_3();
real b = ldexp(real::R_1() - a, real::TOTAL_BITS);
real b = ldexp(real::R_1() - a, a.total_bits());

lolunit_assert_lequal((double)fabs(b), 1.0);
}

lolunit_declare_test(sqrt_cbrt)
{
double sqrt0 = sqrt(real(0));
double sqrt1 = sqrt(real(1));
double sqrt2 = sqrt(real(2));
double sqrt3 = sqrt(real(3));
double sqrt4 = sqrt(real(4));
double sqrt5 = sqrt(real(5));
double sqrt6 = sqrt(real(6));
double sqrt7 = sqrt(real(7));
double sqrt8 = sqrt(real(8));

lolunit_assert_doubles_equal(sqrt0, sqrt(0.0), 1e-8);
lolunit_assert_doubles_equal(sqrt1, sqrt(1.0), 1e-8);
lolunit_assert_doubles_equal(sqrt2, sqrt(2.0), 1e-8);
lolunit_assert_doubles_equal(sqrt3, sqrt(3.0), 1e-8);
lolunit_assert_doubles_equal(sqrt4, sqrt(4.0), 1e-8);
lolunit_assert_doubles_equal(sqrt5, sqrt(5.0), 1e-8);
lolunit_assert_doubles_equal(sqrt6, sqrt(6.0), 1e-8);
lolunit_assert_doubles_equal(sqrt7, sqrt(7.0), 1e-8);
lolunit_assert_doubles_equal(sqrt8, sqrt(8.0), 1e-8);
}

lolunit_declare_test(real_ldexp)
{
real a1(1.5);


Načítá se…
Zrušit
Uložit