|
|
@@ -678,12 +678,18 @@ real log2(real const &x) |
|
|
|
+ fast_log(tmp) * real::R_LOG2E; |
|
|
|
} |
|
|
|
|
|
|
|
static real fast_exp(real const &x) |
|
|
|
real log10(real const &x) |
|
|
|
{ |
|
|
|
/* This fast exp method is tuned to work on the [0..1] range and |
|
|
|
return log(x) * real::R_LOG10E; |
|
|
|
} |
|
|
|
|
|
|
|
static real fast_exp_sub(real const &x, real const &y) |
|
|
|
{ |
|
|
|
/* This fast exp method is tuned to work on the [-1..1] range and |
|
|
|
* no effort whatsoever was made to improve convergence outside this |
|
|
|
* domain of validity. */ |
|
|
|
real ret = real::R_1, fact = real::R_1, xn = x; |
|
|
|
* domain of validity. The argument y is used for cases where we |
|
|
|
* don't want the leading 1 in the Taylor series. */ |
|
|
|
real ret = real::R_1 - y, fact = real::R_1, xn = x; |
|
|
|
|
|
|
|
for (int i = 1; ; i++) |
|
|
|
{ |
|
|
@@ -721,7 +727,7 @@ real exp(real const &x) |
|
|
|
*/ |
|
|
|
int e0 = x / real::R_LN2; |
|
|
|
real x0 = x - (real)e0 * real::R_LN2; |
|
|
|
real x1 = fast_exp(x0); |
|
|
|
real x1 = fast_exp_sub(x0, real::R_0); |
|
|
|
x1.m_signexp += e0; |
|
|
|
return x1; |
|
|
|
} |
|
|
@@ -731,11 +737,39 @@ real exp2(real const &x) |
|
|
|
/* Strategy for exp2(x): see strategy in exp(). */ |
|
|
|
int e0 = x; |
|
|
|
real x0 = x - (real)e0; |
|
|
|
real x1 = fast_exp(x0 * real::R_LN2); |
|
|
|
real x1 = fast_exp_sub(x0 * real::R_LN2, real::R_0); |
|
|
|
x1.m_signexp += e0; |
|
|
|
return x1; |
|
|
|
} |
|
|
|
|
|
|
|
real sinh(real const &x) |
|
|
|
{ |
|
|
|
/* We cannot always use (exp(x)-exp(-x))/2 because we'll lose |
|
|
|
* accuracy near zero. We only use this identity for |x|>0.5. If |
|
|
|
* |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */ |
|
|
|
bool near_zero = (fabs(x) < real::R_1 >> 1); |
|
|
|
real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x); |
|
|
|
real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x); |
|
|
|
return (x1 - x2) >> 1; |
|
|
|
} |
|
|
|
|
|
|
|
real tanh(real const &x) |
|
|
|
{ |
|
|
|
/* See sinh() for the strategy here */ |
|
|
|
bool near_zero = (fabs(x) < real::R_1 >> 1); |
|
|
|
real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x); |
|
|
|
real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x); |
|
|
|
real x3 = near_zero ? x1 + x2 + real::R_2 : x1 + x2; |
|
|
|
return (x1 - x2) / x3; |
|
|
|
} |
|
|
|
|
|
|
|
real cosh(real const &x) |
|
|
|
{ |
|
|
|
/* No need to worry about accuracy here; maybe the last bit is slightly |
|
|
|
* off, but that's about it. */ |
|
|
|
return (exp(x) + exp(-x)) >> 1; |
|
|
|
} |
|
|
|
|
|
|
|
real copysign(real const &x, real const &y) |
|
|
|
{ |
|
|
|
real ret = x; |
|
|
|