Procházet zdrojové kódy

math: move matrix code out of vector.h into a new matrix.h header.

undefined
Sam Hocevar před 10 roky
rodič
revize
b7e237c6ea
7 změnil soubory, kde provedl 445 přidání a 417 odebrání
  1. +1
    -1
      src/Makefile.am
  2. +4
    -0
      src/lol/base/types.h
  3. +1
    -0
      src/lol/math/all.h
  4. +427
    -0
      src/lol/math/matrix.h
  5. +8
    -416
      src/lol/math/vector.h
  6. +1
    -0
      src/lolcore.vcxproj
  7. +3
    -0
      src/lolcore.vcxproj.filters

+ 1
- 1
src/Makefile.am Zobrazit soubor

@@ -43,7 +43,7 @@ liblolcore_headers = \
lol/math/all.h \
lol/math/functions.h lol/math/vector.h lol/math/half.h lol/math/real.h \
lol/math/geometry.h lol/math/interp.h lol/math/rand.h lol/math/array2d.h \
lol/math/array3d.h lol/math/constants.h \
lol/math/array3d.h lol/math/constants.h lol/math/matrix.h \
\
lol/algorithm/all.h \
lol/algorithm/sort.h lol/algorithm/portal.h lol/algorithm/aabb_tree.h \


+ 4
- 0
src/lol/base/types.h Zobrazit soubor

@@ -28,6 +28,10 @@ typedef Real<16> real;
/* The “half” type used for 16-bit floating point numbers. */
class half;

/* Forward declaration of vec and matrix */
template<int N, typename T, int MASK> struct vec;
template<int COLS, int ROWS, typename T> struct matrix;

} /* namespace lol */

#endif // __LOL_BASE_TYPES_H__


+ 1
- 0
src/lol/math/all.h Zobrazit soubor

@@ -16,6 +16,7 @@
#include <lol/math/half.h>
#include <lol/math/real.h>
#include <lol/math/vector.h>
#include <lol/math/matrix.h>
#include <lol/math/array2d.h>
#include <lol/math/array3d.h>
#include <lol/math/geometry.h>


+ 427
- 0
src/lol/math/matrix.h Zobrazit soubor

@@ -0,0 +1,427 @@
//
// Lol Engine
//
// Copyright: (c) 2010-2014 Sam Hocevar <sam@hocevar.net>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the Do What The Fuck You Want To
// Public License, Version 2, as published by Sam Hocevar. See
// http://www.wtfpl.net/ for more details.
//

//
// The matrix classes
// ------------------
//

#if !defined __LOL_MATH_MATRIX_H__
#define __LOL_MATH_MATRIX_H__

#include <stdint.h>
#include <ostream>

#include <lol/math/vector.h>

namespace lol
{

#if !LOL_FEATURE_CXX11_CONSTEXPR
# define constexpr /* */
#endif

/* The generic "matrix" type, which is a fixed-size matrix */
template<int COLS, int ROWS, typename T>
struct matrix
{
typedef matrix<COLS,ROWS,T> type;

inline matrix() {}

explicit inline matrix(T const &val)
{
T const zero = T(0);
for (int i = 0; i < COLS; ++i)
for (int j = 0; j < ROWS; ++j)
m_data[i][j] = i == j ? val : zero;
}

inline vec<ROWS,T>& operator[](size_t n) { return m_data[n]; }
inline vec<ROWS,T> const& operator[](size_t n) const { return m_data[n]; }

private:
vec<ROWS,T> m_data[COLS];
};

/*
* 2×2-element matrices
*/

template <typename T>
struct matrix<2, 2, T>
{
typedef matrix<2,2,T> type;

inline matrix() {}
inline matrix(vec<2,T> V0, vec<2,T> V1)
: v0(V0), v1(V1) {}

explicit inline matrix(T const &val)
: v0(val, (T)0),
v1((T)0, val) {}

explicit inline matrix(matrix<4,4,T> const &mat)
: v0(mat[0].xy),
v1(mat[1].xy) {}

inline vec<2,T>& operator[](size_t n) { return (&v0)[n]; }
inline vec<2,T> const& operator[](size_t n) const { return (&v0)[n]; }

/* Helpers for transformation matrices */
static matrix<2,2,T> rotate(T degrees);
static inline matrix<2,2,T> rotate(matrix<2,2,T> mat, T degrees)
{
return rotate(degrees) * mat;
}

void printf() const;
String tostring() const;

template<class U>
friend std::ostream &operator<<(std::ostream &stream,
matrix<2,2,U> const &m);

vec<2,T> v0, v1;

static const matrix<2,2,T> identity;
};

/*
* 3×3-element matrices
*/

template <typename T>
struct matrix<3,3,T>
{
typedef matrix<3,3,T> type;

inline matrix() {}
inline matrix(vec<3,T> V0, vec<3,T> V1, vec<3,T> V2)
: v0(V0), v1(V1), v2(V2) {}

explicit inline matrix(T const &val)
: v0(val, (T)0, (T)0),
v1((T)0, val, (T)0),
v2((T)0, (T)0, val) {}

explicit inline matrix(matrix<2,2,T> mat)
: v0(mat[0], (T)0),
v1(mat[1], (T)0),
v2((T)0, (T)0, (T)0) {}

explicit inline matrix(matrix<2,2,T> mat, T const &val)
: v0(vec<3,T>(mat[0], (T)0)),
v1(vec<3,T>(mat[1], (T)0)),
v2((T)0, (T)0, val) {}

explicit inline matrix(matrix<4,4,T> const &mat)
: v0(mat[0].xyz),
v1(mat[1].xyz),
v2(mat[2].xyz) {}

explicit matrix(Quat<T> const &q);

inline vec<3,T>& operator[](size_t n) { return (&v0)[n]; }
inline vec<3,T> const& operator[](size_t n) const { return (&v0)[n]; }

/* Helpers for transformation matrices */
static matrix<3,3,T> scale(T x);
static matrix<3,3,T> scale(T x, T y, T z);
static matrix<3,3,T> scale(vec<3,T> v);
static matrix<3,3,T> rotate(T degrees, T x, T y, T z);
static matrix<3,3,T> rotate(T degrees, vec<3,T> v);

static matrix<3,3,T> fromeuler_xyz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xzy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yxz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yzx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zxy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zyx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xyz(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_xzy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yxz(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yzx(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zxy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zyx(T phi, T theta, T psi);

static matrix<3,3,T> fromeuler_xyx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xzx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yxy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yzy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zxz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zyz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xyx(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_xzx(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yxy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yzy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zxz(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zyz(T phi, T theta, T psi);

static inline matrix<3,3,T> rotate(matrix<3,3,T> mat, T degrees, vec<3,T> v)
{
return rotate(degrees, v) * mat;
}

void printf() const;
String tostring() const;

template<class U>
friend std::ostream &operator<<(std::ostream &stream,
matrix<3,3,U> const &m);

vec<3,T> v0, v1, v2;

static const matrix<3,3,T> identity;
};

/*
* 4×4-element matrices
*/

template <typename T>
struct matrix<4, 4, T>
{
typedef matrix<4,4,T> type;

inline matrix() {}
inline matrix(vec<4,T> V0, vec<4,T> V1, vec<4,T> V2, vec<4,T> V3)
: v0(V0), v1(V1), v2(V2), v3(V3) {}

explicit inline matrix(T const &val)
: v0(val, (T)0, (T)0, (T)0),
v1((T)0, val, (T)0, (T)0),
v2((T)0, (T)0, val, (T)0),
v3((T)0, (T)0, (T)0, val) {}

explicit inline matrix(matrix<2,2,T> mat)
: v0(mat[0], (T)0, (T)0),
v1(mat[1], (T)0, (T)0),
v2((T)0, (T)0, (T)0, (T)0),
v3((T)0, (T)0, (T)0, (T)0) {}

explicit inline matrix(matrix<2,2,T> mat, T const &val1, T const &val2)
: v0(mat[0], (T)0, (T)0),
v1(mat[1], (T)0, (T)0),
v2((T)0, (T)0, val1, (T)0),
v3((T)0, (T)0, (T)0, val2) {}

explicit inline matrix(matrix<3,3,T> mat)
: v0(mat[0], (T)0),
v1(mat[1], (T)0),
v2(mat[2], (T)0),
v3((T)0, (T)0, (T)0, (T)0) {}

explicit inline matrix(matrix<3,3,T> mat, T const &val)
: v0(mat[0], (T)0),
v1(mat[1], (T)0),
v2(mat[2], (T)0),
v3((T)0, (T)0, (T)0, val) {}

explicit matrix(Quat<T> const &q);

inline vec<4,T>& operator[](size_t n) { return (&v0)[n]; }
inline vec<4,T> const& operator[](size_t n) const { return (&v0)[n]; }

/* Helpers for transformation matrices */
static matrix<4,4,T> translate(T x, T y, T z);
static matrix<4,4,T> translate(vec<3,T> v);

static inline matrix<4,4,T> scale(T x)
{
return matrix<4,4,T>(matrix<3,3,T>::scale(x), (T)1);
}

static inline matrix<4,4,T> scale(T x, T y, T z)
{
return matrix<4,4,T>(matrix<3,3,T>::scale(x, y, z), (T)1);
}

static inline matrix<4,4,T> scale(vec<3,T> v)
{
return matrix<4,4,T>(matrix<3,3,T>::scale(v), (T)1);
}

static inline matrix<4,4,T> translate(matrix<4,4,T> const &mat, vec<3,T> v)
{
return translate(v) * mat;
}

static inline matrix<4,4,T> rotate(T degrees, T x, T y, T z)
{
return matrix<4,4,T>(matrix<3,3,T>::rotate(degrees, x, y, z), (T)1);
}

static inline matrix<4,4,T> rotate(T degrees, vec<3,T> v)
{
return matrix<4,4,T>(matrix<3,3,T>::rotate(degrees, v), (T)1);
}

static inline matrix<4,4,T> rotate(matrix<4,4,T> &mat, T degrees, vec<3,T> v)
{
return rotate(degrees, v) * mat;
}

static matrix<4,4,T> fromeuler_xyz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xzy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yxz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yzx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zxy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zyx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xyz(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_xzy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yxz(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yzx(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zxy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zyx(T phi, T theta, T psi);

static matrix<4,4,T> fromeuler_xyx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xzx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yxy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yzy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zxz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zyz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xyx(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_xzx(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yxy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yzy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zxz(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zyz(T phi, T theta, T psi);

/* Helpers for view matrices */
static matrix<4,4,T> lookat(vec<3,T> eye, vec<3,T> center, vec<3,T> up);

/* Helpers for projection matrices */
static matrix<4,4,T> ortho(T left, T right, T bottom, T top, T near, T far);
static matrix<4,4,T> ortho(T width, T height, T near, T far);
static matrix<4,4,T> frustum(T left, T right, T bottom, T top, T near, T far);
static matrix<4,4,T> perspective(T fov_y, T width, T height, T near, T far);
static matrix<4,4,T> shifted_perspective(T fov_y, T screen_size, T screen_ratio_yx, T near, T far);

void printf() const;
String tostring() const;

template<class U>
friend std::ostream &operator<<(std::ostream &stream,
matrix<4,4,U> const &m);

vec<4,T> v0, v1, v2, v3;

static const matrix<4,4,T> identity;
};

template<typename T> T determinant(matrix<2,2,T> const &);
template<typename T> T determinant(matrix<3,3,T> const &);
template<typename T> T determinant(matrix<4,4,T> const &);

template<typename T> matrix<2,2,T> transpose(matrix<2,2,T> const &);
template<typename T> matrix<3,3,T> transpose(matrix<3,3,T> const &);
template<typename T> matrix<4,4,T> transpose(matrix<4,4,T> const &);

template<typename T> matrix<2,2,T> inverse(matrix<2,2,T> const &);
template<typename T> matrix<3,3,T> inverse(matrix<3,3,T> const &);
template<typename T> matrix<4,4,T> inverse(matrix<4,4,T> const &);

/*
* Addition/subtraction/unary
*/

template<int COLS, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> &operator +=(matrix<COLS, ROWS, T> &a,
matrix<COLS, ROWS, T> const &b)
{
for (int i = 0; i < COLS; ++i)
a[i] += b[i];
return a;
}

template<int COLS, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> operator +(matrix<COLS, ROWS, T> const &a,
matrix<COLS, ROWS, T> const &b)
{
matrix<COLS, ROWS, T> ret = a;
return ret += b;
}

template<int COLS, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> operator +(matrix<COLS, ROWS, T> const &m)
{
return m;
}

template<int COLS, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> &operator -=(matrix<COLS, ROWS, T> &a,
matrix<COLS, ROWS, T> const &b)
{
for (int i = 0; i < COLS; ++i)
a[i] -= b[i];
return a;
}

template<int COLS, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> operator -(matrix<COLS, ROWS, T> const &a,
matrix<COLS, ROWS, T> const &b)
{
matrix<COLS, ROWS, T> ret = a;
return ret -= b;
}

template<int COLS, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> operator -(matrix<COLS, ROWS, T> const &m)
{
matrix<COLS, ROWS, T> ret;
for (int i = 0; i < COLS; ++i)
ret[i] = -m[i];
return ret;
}

/*
* Matrix-vector multiplication
*/

template<int COLS, int ROWS, int MASK, typename T>
static inline vec<ROWS, T> operator *(matrix<COLS, ROWS, T> const &m,
vec<COLS, T, MASK> const &v)
{
vec<ROWS, T> ret(T(0));
for (int i = 0; i < COLS; ++i)
ret += m[i] * v[i];
return ret;
}

/*
* Matrix-matrix multiplication
*/

template<int COLS, int N, int ROWS, typename T>
static inline matrix<COLS, ROWS, T> operator *(matrix<N, ROWS, T> const &a,
matrix<COLS, N, T> const &b)
{
matrix<COLS, ROWS, T> ret;
for (int i = 0; i < COLS; ++i)
ret[i] = a * b[i];
return ret;
}

template<int N, typename T>
static inline matrix<N, N, T> &operator *=(matrix<N, N, T> &a,
matrix<N, N, T> const &b)
{
return a = a * b;
}

#if !LOL_FEATURE_CXX11_CONSTEXPR
#undef constexpr
#endif

} /* namespace lol */

#endif // __LOL_MATH_MATRIX_H__


+ 8
- 416
src/lol/math/vector.h Zobrazit soubor

@@ -52,6 +52,8 @@ namespace lol
template<int N, typename T, int MASK = -1>
struct vec
{
typedef vec<N,T> type;

inline vec<N, T, MASK>& operator =(vec<N, T> that);

#if LOL_FEATURE_CXX11_RELAXED_UNIONS
@@ -78,16 +80,13 @@ struct vec
template<int N, typename T>
struct vec<N, T, -1>
{
private:
T m_data[N];
};
typedef vec<N,T> type;

inline T& operator[](size_t n) { return m_data[n]; }
inline T const& operator[](size_t n) const { return m_data[n]; }

/* The generic "matrix" type, which is a fixed-size matrix */
template<int COLS, int ROWS, typename T>
struct matrix
{
private:
T m_data[COLS][ROWS];
T m_data[N];
};

/* The generic complex and quaternion types. */
@@ -99,7 +98,6 @@ template<typename T> struct Quat;
*/

#define COMMA ,

#define LOL_VECTOR_TYPEDEFS(tleft, tright, suffix) \
typedef tleft half tright f16##suffix; \
typedef tleft float tright suffix; \
@@ -134,6 +132,7 @@ LOL_VECTOR_TYPEDEFS(Cmplx<, >, cmplx)
LOL_VECTOR_TYPEDEFS(Quat<, >, quat)

#undef LOL_VECTOR_TYPEDEFS
#undef COMMA

/*
* HLSL/Cg-compliant type names.
@@ -1612,413 +1611,6 @@ inline vec<N, T, MASK>& vec<N, T, MASK>::operator =(vec<N,T> that)
}
#endif

/*
* 2×2-element matrices
*/

template <typename T>
struct matrix<2, 2, T>
{
typedef matrix<2,2,T> type;

inline matrix() {}
inline matrix(vec<2,T> V0, vec<2,T> V1)
: v0(V0), v1(V1) {}

explicit inline matrix(T val)
: v0(val, (T)0),
v1((T)0, val) {}

explicit inline matrix(matrix<4,4,T> const &mat)
: v0(mat[0].xy),
v1(mat[1].xy) {}

inline vec<2,T>& operator[](size_t n) { return (&v0)[n]; }
inline vec<2,T> const& operator[](size_t n) const { return (&v0)[n]; }

/* Helpers for transformation matrices */
static matrix<2,2,T> rotate(T degrees);
static inline matrix<2,2,T> rotate(matrix<2,2,T> mat, T degrees)
{
return rotate(degrees) * mat;
}

void printf() const;
String tostring() const;

template<class U>
friend std::ostream &operator<<(std::ostream &stream,
matrix<2,2,U> const &m);

inline matrix<2,2,T> operator +(matrix<2,2,T> const m) const
{
return matrix<2,2,T>(v0 + m[0], v1 + m[1]);
}

inline matrix<2,2,T> operator +=(matrix<2,2,T> const m)
{
return *this = *this + m;
}

inline matrix<2,2,T> operator -(matrix<2,2,T> const m) const
{
return matrix<2,2,T>(v0 - m[0], v1 - m[1]);
}

inline matrix<2,2,T> operator -=(matrix<2,2,T> const m)
{
return *this = *this - m;
}

inline matrix<2,2,T> operator *(matrix<2,2,T> const m) const
{
return matrix<2,2,T>(*this * m[0], *this * m[1]);
}

inline matrix<2,2,T> operator *=(matrix<2,2,T> const m)
{
return *this = *this * m;
}

inline vec<2,T> operator *(vec<2,T> const m) const
{
vec<2,T> ret;
for (int j = 0; j < 2; j++)
{
T tmp = 0;
for (int k = 0; k < 2; k++)
tmp += (*this)[k][j] * m[k];
ret[j] = tmp;
}
return ret;
}

vec<2,T> v0, v1;

static const matrix<2,2,T> identity;
};

/*
* 3×3-element matrices
*/

template <typename T>
struct matrix<3,3,T>
{
typedef matrix<3,3,T> type;

inline matrix() {}
inline matrix(vec<3,T> V0, vec<3,T> V1, vec<3,T> V2)
: v0(V0), v1(V1), v2(V2) {}

explicit inline matrix(T val)
: v0(val, (T)0, (T)0),
v1((T)0, val, (T)0),
v2((T)0, (T)0, val) {}

explicit inline matrix(matrix<2,2,T> mat)
: v0(mat[0], (T)0),
v1(mat[1], (T)0),
v2((T)0, (T)0, (T)0) {}

explicit inline matrix(matrix<2,2,T> mat, T val)
: v0(vec<3,T>(mat[0], (T)0)),
v1(vec<3,T>(mat[1], (T)0)),
v2((T)0, (T)0, val) {}

explicit inline matrix(matrix<4,4,T> const &mat)
: v0(mat[0].xyz),
v1(mat[1].xyz),
v2(mat[2].xyz) {}

explicit matrix(Quat<T> const &q);

inline vec<3,T>& operator[](size_t n) { return (&v0)[n]; }
inline vec<3,T> const& operator[](size_t n) const { return (&v0)[n]; }

/* Helpers for transformation matrices */
static matrix<3,3,T> scale(T x);
static matrix<3,3,T> scale(T x, T y, T z);
static matrix<3,3,T> scale(vec<3,T> v);
static matrix<3,3,T> rotate(T degrees, T x, T y, T z);
static matrix<3,3,T> rotate(T degrees, vec<3,T> v);

static matrix<3,3,T> fromeuler_xyz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xzy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yxz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yzx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zxy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zyx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xyz(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_xzy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yxz(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yzx(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zxy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zyx(T phi, T theta, T psi);

static matrix<3,3,T> fromeuler_xyx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xzx(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yxy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_yzy(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zxz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_zyz(vec<3,T> const &v);
static matrix<3,3,T> fromeuler_xyx(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_xzx(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yxy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_yzy(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zxz(T phi, T theta, T psi);
static matrix<3,3,T> fromeuler_zyz(T phi, T theta, T psi);

static inline matrix<3,3,T> rotate(matrix<3,3,T> mat, T degrees, vec<3,T> v)
{
return rotate(degrees, v) * mat;
}

void printf() const;
String tostring() const;

template<class U>
friend std::ostream &operator<<(std::ostream &stream,
matrix<3,3,U> const &m);

inline matrix<3,3,T> operator +(matrix<3,3,T> const m) const
{
return matrix<3,3,T>(v0 + m[0], v1 + m[1], v2 + m[2]);
}

inline matrix<3,3,T> operator +=(matrix<3,3,T> const m)
{
return *this = *this + m;
}

inline matrix<3,3,T> operator -(matrix<3,3,T> const m) const
{
return matrix<3,3,T>(v0 - m[0], v1 - m[1], v2 - m[2]);
}

inline matrix<3,3,T> operator -=(matrix<3,3,T> const m)
{
return *this = *this - m;
}

inline matrix<3,3,T> operator *(matrix<3,3,T> const m) const
{
return matrix<3,3,T>(*this * m[0], *this * m[1], *this * m[2]);
}

inline matrix<3,3,T> operator *=(matrix<3,3,T> const m)
{
return *this = *this * m;
}

inline vec<3,T> operator *(vec<3,T> const m) const
{
vec<3,T> ret;
for (int j = 0; j < 3; j++)
{
T tmp = 0;
for (int k = 0; k < 3; k++)
tmp += (*this)[k][j] * m[k];
ret[j] = tmp;
}
return ret;
}

vec<3,T> v0, v1, v2;

static const matrix<3,3,T> identity;
};

/*
* 4×4-element matrices
*/

template <typename T>
struct matrix<4, 4, T>
{
typedef matrix<4,4,T> type;

inline matrix() {}
inline matrix(vec<4,T> V0, vec<4,T> V1, vec<4,T> V2, vec<4,T> V3)
: v0(V0), v1(V1), v2(V2), v3(V3) {}

explicit inline matrix(T val)
: v0(val, (T)0, (T)0, (T)0),
v1((T)0, val, (T)0, (T)0),
v2((T)0, (T)0, val, (T)0),
v3((T)0, (T)0, (T)0, val) {}

explicit inline matrix(matrix<2,2,T> mat)
: v0(mat[0], (T)0, (T)0),
v1(mat[1], (T)0, (T)0),
v2((T)0, (T)0, (T)0, (T)0),
v3((T)0, (T)0, (T)0, (T)0) {}

explicit inline matrix(matrix<2,2,T> mat, T val1, T val2)
: v0(mat[0], (T)0, (T)0),
v1(mat[1], (T)0, (T)0),
v2((T)0, (T)0, val1, (T)0),
v3((T)0, (T)0, (T)0, val2) {}

explicit inline matrix(matrix<3,3,T> mat)
: v0(mat[0], (T)0),
v1(mat[1], (T)0),
v2(mat[2], (T)0),
v3((T)0, (T)0, (T)0, (T)0) {}

explicit inline matrix(matrix<3,3,T> mat, T val)
: v0(mat[0], (T)0),
v1(mat[1], (T)0),
v2(mat[2], (T)0),
v3((T)0, (T)0, (T)0, val) {}

explicit matrix(Quat<T> const &q);

inline vec<4,T>& operator[](size_t n) { return (&v0)[n]; }
inline vec<4,T> const& operator[](size_t n) const { return (&v0)[n]; }

/* Helpers for transformation matrices */
static matrix<4,4,T> translate(T x, T y, T z);
static matrix<4,4,T> translate(vec<3,T> v);

static inline matrix<4,4,T> scale(T x)
{
return matrix<4,4,T>(matrix<3,3,T>::scale(x), (T)1);
}

static inline matrix<4,4,T> scale(T x, T y, T z)
{
return matrix<4,4,T>(matrix<3,3,T>::scale(x, y, z), (T)1);
}

static inline matrix<4,4,T> scale(vec<3,T> v)
{
return matrix<4,4,T>(matrix<3,3,T>::scale(v), (T)1);
}

static inline matrix<4,4,T> translate(matrix<4,4,T> const &mat, vec<3,T> v)
{
return translate(v) * mat;
}

static inline matrix<4,4,T> rotate(T degrees, T x, T y, T z)
{
return matrix<4,4,T>(matrix<3,3,T>::rotate(degrees, x, y, z), (T)1);
}

static inline matrix<4,4,T> rotate(T degrees, vec<3,T> v)
{
return matrix<4,4,T>(matrix<3,3,T>::rotate(degrees, v), (T)1);
}

static inline matrix<4,4,T> rotate(matrix<4,4,T> &mat, T degrees, vec<3,T> v)
{
return rotate(degrees, v) * mat;
}

static matrix<4,4,T> fromeuler_xyz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xzy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yxz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yzx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zxy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zyx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xyz(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_xzy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yxz(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yzx(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zxy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zyx(T phi, T theta, T psi);

static matrix<4,4,T> fromeuler_xyx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xzx(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yxy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_yzy(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zxz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_zyz(vec<3,T> const &v);
static matrix<4,4,T> fromeuler_xyx(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_xzx(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yxy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_yzy(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zxz(T phi, T theta, T psi);
static matrix<4,4,T> fromeuler_zyz(T phi, T theta, T psi);

/* Helpers for view matrices */
static matrix<4,4,T> lookat(vec<3,T> eye, vec<3,T> center, vec<3,T> up);

/* Helpers for projection matrices */
static matrix<4,4,T> ortho(T left, T right, T bottom, T top, T near, T far);
static matrix<4,4,T> ortho(T width, T height, T near, T far);
static matrix<4,4,T> frustum(T left, T right, T bottom, T top, T near, T far);
static matrix<4,4,T> perspective(T fov_y, T width, T height, T near, T far);
static matrix<4,4,T> shifted_perspective(T fov_y, T screen_size, T screen_ratio_yx, T near, T far);

void printf() const;
String tostring() const;

template<class U>
friend std::ostream &operator<<(std::ostream &stream,
matrix<4,4,U> const &m);

inline matrix<4,4,T> operator +(matrix<4,4,T> const &m) const
{
return matrix<4,4,T>(v0 + m[0], v1 + m[1], v2 + m[2], v3 + m[3]);
}

inline matrix<4,4,T> operator +=(matrix<4,4,T> const &m)
{
return *this = *this + m;
}

inline matrix<4,4,T> operator -(matrix<4,4,T> const &m) const
{
return matrix<4,4,T>(v0 - m[0], v1 - m[1], v2 - m[2], v3 - m[3]);
}

inline matrix<4,4,T> operator -=(matrix<4,4,T> const &m)
{
return *this = *this - m;
}

inline matrix<4,4,T> operator *(matrix<4,4,T> const &m) const
{
return matrix<4,4,T>(*this * m[0], *this * m[1], *this * m[2], *this * m[3]);
}

inline matrix<4,4,T> operator *=(matrix<4,4,T> const &m)
{
return *this = *this * m;
}

inline vec<4,T> operator *(vec<4,T> const &m) const
{
vec<4,T> ret;
for (int j = 0; j < 4; j++)
{
T tmp = 0;
for (int k = 0; k < 4; k++)
tmp += (*this)[k][j] * m[k];
ret[j] = tmp;
}
return ret;
}

vec<4,T> v0, v1, v2, v3;

static const matrix<4,4,T> identity;
};

template<typename T> T determinant(matrix<2,2,T> const &);
template<typename T> T determinant(matrix<3,3,T> const &);
template<typename T> T determinant(matrix<4,4,T> const &);

template<typename T> matrix<2,2,T> transpose(matrix<2,2,T> const &);
template<typename T> matrix<3,3,T> transpose(matrix<3,3,T> const &);
template<typename T> matrix<4,4,T> transpose(matrix<4,4,T> const &);

template<typename T> matrix<2,2,T> inverse(matrix<2,2,T> const &);
template<typename T> matrix<3,3,T> inverse(matrix<3,3,T> const &);
template<typename T> matrix<4,4,T> inverse(matrix<4,4,T> const &);

#if !LOL_FEATURE_CXX11_CONSTEXPR
#undef constexpr
#endif


+ 1
- 0
src/lolcore.vcxproj Zobrazit soubor

@@ -326,6 +326,7 @@
<ClInclude Include="lol\math\geometry.h" />
<ClInclude Include="lol\math\half.h" />
<ClInclude Include="lol\math\interp.h" />
<ClInclude Include="lol\math\matrix.h" />
<ClInclude Include="lol\math\rand.h" />
<ClInclude Include="lol\math\real.h" />
<ClInclude Include="lol\math\remez.h" />


+ 3
- 0
src/lolcore.vcxproj.filters Zobrazit soubor

@@ -438,6 +438,9 @@
<ClInclude Include="lol\math\all.h">
<Filter>lol\math</Filter>
</ClInclude>
<ClInclude Include="lol\math\matrix.h">
<Filter>lol\math</Filter>
</ClInclude>
<ClInclude Include="lol\math\rand.h">
<Filter>lol\math</Filter>
</ClInclude>


Načítá se…
Zrušit
Uložit