Pārlūkot izejas kodu

lolremez: simplify the Remez solver by using our new polynomial class.

undefined
Sam Hocevar pirms 10 gadiem
vecāks
revīzija
d34f0e2991
2 mainītis faili ar 81 papildinājumiem un 106 dzēšanām
  1. +71
    -99
      tools/lolremez/solver.cpp
  2. +10
    -7
      tools/lolremez/solver.h

+ 71
- 99
tools/lolremez/solver.cpp Parādīt failu

@@ -12,9 +12,12 @@
# include "config.h"
#endif

#include <functional>

#include <lol/engine.h>

#include <lol/math/real.h>
#include <lol/math/polynomial.h>

#include "matrix.h"
#include "solver.h"
@@ -68,34 +71,16 @@ void RemezSolver::Run(real a, real b,
PrintPoly();
}

real RemezSolver::EvalCheby(real const &x)
{
real ret = 0.0, xn = 1.0;

for (int i = 0; i < m_order + 1; i++)
{
real mul = 0;
for (int j = 0; j < m_order + 1; j++)
mul += m_coeff[j] * (real)Cheby(j, i);
ret += mul * xn;
xn *= x;
}

return ret;
}

void RemezSolver::Init()
{
/* m_order + 1 Chebyshev coefficients, plus 1 error value */
m_coeff.Resize(m_order + 2);

/* m_order + 1 zeroes of the error function */
m_zeroes.Resize(m_order + 1);

/* m_order + 2 control points */
m_control.Resize(m_order + 2);

/* Pick up x_i where error will be 0 and compute f(x_i) */
/* Initial estimates for the x_i where the error will be zero and
* precompute f(x_i). */
array<real> fxn;
for (int i = 0; i < m_order + 1; i++)
{
@@ -106,33 +91,25 @@ void RemezSolver::Init()
/* We build a matrix of Chebishev evaluations: row i contains the
* evaluations of x_i for polynomial order n = 0, 1, ... */
LinearSystem<real> system(m_order + 1);
for (int i = 0; i < m_order + 1; i++)
for (int n = 0; n < m_order + 1; n++)
{
/* Compute the powers of x_i */
array<real> powers;
powers.Push(real(1.0));
for (int n = 1; n < m_order + 1; n++)
powers.Push(powers.Last() * m_zeroes[i]);

/* Compute the Chebishev evaluations at x_i */
for (int n = 0; n < m_order + 1; n++)
{
real sum = 0.0;
for (int k = 0; k < m_order + 1; k++)
sum += (real)Cheby(n, k) * powers[k];
system.m(i, n) = sum;
}
auto p = polynomial<real>::chebyshev(n);
for (int i = 0; i < m_order + 1; i++)
system.m(i, n) = p.eval(m_zeroes[i]);
}

/* Solve the system */
system = system.inv();

/* Compute interpolation coefficients */
for (int j = 0; j < m_order + 1; j++)
/* Compute new Chebyshev estimate */
m_estimate = polynomial<real>();
for (int n = 0; n < m_order + 1; n++)
{
m_coeff[j] = 0;
real weight = 0;
for (int i = 0; i < m_order + 1; i++)
m_coeff[j] += system.m(j, i) * fxn[i];
weight += system.m(n, i) * fxn[i];

m_estimate += weight * polynomial<real>::chebyshev(n);
}
}

@@ -168,6 +145,7 @@ void RemezSolver::FindZeroes()
}
}

/* XXX: this is the real costly function */
real RemezSolver::FindExtrema()
{
using std::printf;
@@ -177,6 +155,9 @@ real RemezSolver::FindExtrema()
* different locations than the absolute error’s. */
real final = 0;

m_stats_cheby = m_stats_func = m_stats_weight = 0.f;
int evals = 0, rounds = 0;

for (int i = 0; i < m_order + 2; i++)
{
real a = -1, b = 1;
@@ -185,7 +166,7 @@ real RemezSolver::FindExtrema()
if (i < m_order + 1)
b = m_zeroes[i];

for (int round = 0; ; round++)
for (int r = 0; ; ++r, ++rounds)
{
real maxerror = 0, maxweight = 0;
int best = -1;
@@ -193,10 +174,11 @@ real RemezSolver::FindExtrema()
real c = a, delta = (b - a) / 4;
for (int k = 0; k <= 4; k++)
{
if (round == 0 || (k & 1))
if (r == 0 || (k & 1))
{
++evals;
real error = fabs(EvalCheby(c) - EvalFunc(c));
real weight = fabs(Weight(c));
real weight = fabs(EvalWeight(c));
/* if error/weight >= maxerror/maxweight */
if (error * maxweight >= maxerror * weight)
{
@@ -233,6 +215,10 @@ real RemezSolver::FindExtrema()
}
}

printf("Iterations: Rounds %d Evals %d\n", rounds, evals);
printf("Times: Cheby %f Func %f EvalWeight %f\n",
m_stats_cheby, m_stats_func, m_stats_weight);

return final;
}

@@ -246,37 +232,32 @@ void RemezSolver::Step()
/* We build a matrix of Chebishev evaluations: row i contains the
* evaluations of x_i for polynomial order n = 0, 1, ... */
LinearSystem<real> system(m_order + 2);
for (int n = 0; n < m_order + 1; n++)
{
auto p = polynomial<real>::chebyshev(n);
for (int i = 0; i < m_order + 2; i++)
system.m(i, n) = p.eval(m_control[i]);
}

/* The last line of the system is the oscillating error */
for (int i = 0; i < m_order + 2; i++)
{
/* Compute the powers of x_i */
array<real> powers;
powers.Push(real(1.0));
for (int n = 1; n < m_order + 1; n++)
powers.Push(powers.Last() * m_control[i]);

/* Compute the Chebishev evaluations at x_i */
for (int n = 0; n < m_order + 1; n++)
{
real sum = 0.0;
for (int k = 0; k < m_order + 1; k++)
sum += (real)Cheby(n, k) * powers[k];
system.m(i, n) = sum;
}
if (i & 1)
system.m(i, m_order + 1) = fabs(Weight(m_control[i]));
else
system.m(i, m_order + 1) = -fabs(Weight(m_control[i]));
real error = fabs(EvalWeight(m_control[i]));
system.m(i, m_order + 1) = (i & 1) ? error : -error;
}

/* Solve the system */
system = system.inv();

/* Compute interpolation coefficients */
for (int j = 0; j < m_order + 1; j++)
/* Compute new polynomial estimate */
m_estimate = polynomial<real>();
for (int n = 0; n < m_order + 1; n++)
{
m_coeff[j] = 0;
real weight = 0;
for (int i = 0; i < m_order + 2; i++)
m_coeff[j] += system.m(j, i) * fxn[i];
weight += system.m(n, i) * fxn[i];

m_estimate += weight * polynomial<real>::chebyshev(n);
}

/* Compute the error */
@@ -285,39 +266,11 @@ void RemezSolver::Step()
error += system.m(m_order + 1, i) * fxn[i];
}

int RemezSolver::Cheby(int n, int k)
{
if (k > n || k < 0)
return 0;
if (n <= 1)
return (n ^ k ^ 1) & 1;
return 2 * Cheby(n - 1, k - 1) - Cheby(n - 2, k);
}

int RemezSolver::Comb(int n, int k)
{
if (k == 0 || k == n)
return 1;
return Comb(n - 1, k - 1) + Comb(n - 1, k);
}

void RemezSolver::PrintPoly()
{
using std::printf;

/* Transform Chebyshev polynomial weights into powers of X^i
* in the [-1..1] range. */
array<real> bn;

for (int i = 0; i < m_order + 1; i++)
{
real tmp = 0;
for (int j = 0; j < m_order + 1; j++)
tmp += m_coeff[j] * (real)Cheby(j, i);
bn.Push(tmp);
}

/* Transform a polynomial in the [-1..1] range into a polynomial
/* Transform our polynomial in the [-1..1] range into a polynomial
* in the [a..b] range. */
array<real> k1p, k2p, an;

@@ -327,11 +280,18 @@ void RemezSolver::PrintPoly()
k2p.Push(i ? k2p[i - 1] * m_invk2 : (real)1);
}

std::function<int(int, int)> comb = [&](int n, int k)
{
if (k == 0 || k == n)
return 1;
return comb(n - 1, k - 1) + comb(n - 1, k);
};

for (int i = 0; i < m_order + 1; i++)
{
real tmp = 0;
for (int j = i; j < m_order + 1; j++)
tmp += (real)Comb(j, i) * k1p[j - i] * bn[j];
tmp += (real)comb(j, i) * k1p[j - i] * m_estimate[j];
an.Push(tmp * k2p[i]);
}

@@ -345,15 +305,27 @@ void RemezSolver::PrintPoly()
printf("\n\n");
}

real RemezSolver::EvalCheby(real const &x)
{
Timer t;
real ret = m_estimate.eval(x);
m_stats_cheby += t.Get();
return ret;
}

real RemezSolver::EvalFunc(real const &x)
{
return m_func(x * m_k2 + m_k1);
Timer t;
real ret = m_func(x * m_k2 + m_k1);
m_stats_func += t.Get();
return ret;
}

real RemezSolver::Weight(real const &x)
real RemezSolver::EvalWeight(real const &x)
{
if (m_weight)
return m_weight(x * m_k2 + m_k1);
return 1;
Timer t;
real ret = m_weight ? m_weight(x * m_k2 + m_k1) : real(1);
m_stats_weight += t.Get();
return ret;
}


+ 10
- 7
tools/lolremez/solver.h Parādīt failu

@@ -28,28 +28,31 @@ public:
RealFunc *func, RealFunc *weight = nullptr);

private:
lol::real EvalCheby(lol::real const &x);
void Init();
void FindZeroes();
lol::real FindExtrema();
void Step();

int Cheby(int n, int k);
int Comb(int n, int k);

void PrintPoly();

lol::real EvalCheby(lol::real const &x);
lol::real EvalFunc(lol::real const &x);
lol::real Weight(lol::real const &x);
lol::real EvalWeight(lol::real const &x);

private:
int m_order;

lol::array<lol::real> m_coeff;
lol::polynomial<lol::real> m_estimate;

lol::array<lol::real> m_zeroes;
lol::array<lol::real> m_control;

RealFunc *m_func, *m_weight;
lol::real m_k1, m_k2, m_invk1, m_invk2, m_epsilon;
int m_decimals;

/* Statistics */
float m_stats_cheby;
float m_stats_func;
float m_stats_weight;
};


Notiek ielāde…
Atcelt
Saglabāt