| @@ -79,11 +79,16 @@ lolunit_declare_fixture(MatrixTest) | |||
| mat2 m(vec2(4, 3), | |||
| vec2(3, 2)); | |||
| /* Invert matrix and check that the results are finite */ | |||
| mat2 m1 = inverse(m); | |||
| for (int j = 0; j < 2; ++j) | |||
| for (int i = 0; i < 2; ++i) | |||
| lolunit_assert_equal(m1[i][j], m1[i][j]); | |||
| { | |||
| lolunit_assert_less(m1[i][j], FLT_MAX); | |||
| lolunit_assert_greater(m1[i][j], -FLT_MAX); | |||
| } | |||
| /* Multiply with original matrix and check that we get identity */ | |||
| mat2 m2 = m1 * m; | |||
| for (int j = 0; j < 2; ++j) | |||
| for (int i = 0; i < 2; ++i) | |||
| @@ -103,8 +108,11 @@ lolunit_declare_fixture(MatrixTest) | |||
| for (int j = 0; j < 3; ++j) | |||
| for (int i = 0; i < 3; ++i) | |||
| { | |||
| lolunit_assert(!isnan(U[i][j])); | |||
| lolunit_assert(!isnan(L[i][j])); | |||
| /* Check that the LU decomposition has valid values */ | |||
| lolunit_assert_less(U[i][j], FLT_MAX); | |||
| lolunit_assert_greater(U[i][j], -FLT_MAX); | |||
| lolunit_assert_less(L[i][j], FLT_MAX); | |||
| lolunit_assert_greater(L[i][j], -FLT_MAX); | |||
| if (i < j) | |||
| lolunit_assert_doubles_equal(U[i][j], 0.f, 1e-5); | |||
| @@ -130,8 +138,11 @@ lolunit_declare_fixture(MatrixTest) | |||
| for (int j = 0; j < 4; ++j) | |||
| for (int i = 0; i < 4; ++i) | |||
| { | |||
| lolunit_assert(!isnan(U[i][j])); | |||
| lolunit_assert(!isnan(L[i][j])); | |||
| /* Check that the LU decomposition has valid values */ | |||
| lolunit_assert_less(U[i][j], FLT_MAX); | |||
| lolunit_assert_greater(U[i][j], -FLT_MAX); | |||
| lolunit_assert_less(L[i][j], FLT_MAX); | |||
| lolunit_assert_greater(L[i][j], -FLT_MAX); | |||
| if (i < j) | |||
| lolunit_assert_doubles_equal(U[i][j], 0.f, 1e-5); | |||
| @@ -157,8 +168,11 @@ lolunit_declare_fixture(MatrixTest) | |||
| for (int j = 0; j < 4; ++j) | |||
| for (int i = 0; i < 4; ++i) | |||
| { | |||
| lolunit_assert(!isnan(U[i][j])); | |||
| lolunit_assert(!isnan(L[i][j])); | |||
| /* Check that the LU decomposition has valid values */ | |||
| lolunit_assert_less(U[i][j], FLT_MAX); | |||
| lolunit_assert_greater(U[i][j], -FLT_MAX); | |||
| lolunit_assert_less(L[i][j], FLT_MAX); | |||
| lolunit_assert_greater(L[i][j], -FLT_MAX); | |||
| if (i < j) | |||
| lolunit_assert_doubles_equal(U[i][j], 0.f, 1e-5); | |||
| @@ -240,11 +254,16 @@ lolunit_declare_fixture(MatrixTest) | |||
| vec3(3, 2, 3), | |||
| vec3(9, 5, 7)); | |||
| /* Invert matrix and check that the results are finite */ | |||
| mat3 m1 = inverse(m); | |||
| for (int j = 0; j < 3; ++j) | |||
| for (int i = 0; i < 3; ++i) | |||
| lolunit_assert_equal(m1[i][j], m1[i][j]); | |||
| { | |||
| lolunit_assert_less(m1[i][j], FLT_MAX); | |||
| lolunit_assert_greater(m1[i][j], -FLT_MAX); | |||
| } | |||
| /* Multiply with original matrix and check that we get identity */ | |||
| mat3 m2 = m1 * m; | |||
| for (int j = 0; j < 3; ++j) | |||
| for (int i = 0; i < 3; ++i) | |||
| @@ -258,11 +277,16 @@ lolunit_declare_fixture(MatrixTest) | |||
| vec4( 4, 2, 5, -4), | |||
| vec4( 5, -3, -7, -6)); | |||
| /* Invert matrix and check that the results are finite */ | |||
| mat4 m1 = inverse(m); | |||
| for (int j = 0; j < 4; ++j) | |||
| for (int i = 0; i < 4; ++i) | |||
| lolunit_assert_equal(m1[i][j], m1[i][j]); | |||
| { | |||
| lolunit_assert_less(m1[i][j], FLT_MAX); | |||
| lolunit_assert_greater(m1[i][j], -FLT_MAX); | |||
| } | |||
| /* Multiply with original matrix and check that we get identity */ | |||
| mat4 m2 = m1 * m; | |||
| for (int j = 0; j < 4; ++j) | |||
| for (int i = 0; i < 4; ++i) | |||
| @@ -275,11 +299,16 @@ lolunit_declare_fixture(MatrixTest) | |||
| vec4(0, 0, 1, 0), | |||
| vec4(0, -1, 0, 0), | |||
| vec4(0, 0, -1, 1)); | |||
| /* Invert matrix and check that the results are finite */ | |||
| mat4 m1 = inverse(m); | |||
| for (int j = 0; j < 4; ++j) | |||
| for (int i = 0; i < 4; ++i) | |||
| lolunit_assert_equal(m1[i][j], m1[i][j]); | |||
| { | |||
| lolunit_assert_less(m1[i][j], FLT_MAX); | |||
| lolunit_assert_greater(m1[i][j], -FLT_MAX); | |||
| } | |||
| /* Multiply with original matrix and check that we get identity */ | |||
| mat4 m2 = m1 * m; | |||
| for (int j = 0; j < 4; ++j) | |||
| for (int i = 0; i < 4; ++i) | |||