|
@@ -214,68 +214,11 @@ public: |
|
|
* Return distance using the CIEDE2000 metric, |
|
|
* Return distance using the CIEDE2000 metric, |
|
|
* input should be in CIE L*a*b*. |
|
|
* input should be in CIE L*a*b*. |
|
|
*/ |
|
|
*/ |
|
|
static float DistanceCIEDE2000(vec3 lab1, vec3 lab2) |
|
|
|
|
|
{ |
|
|
|
|
|
float const deg2rad = 6.28318530718f / 360.f; |
|
|
|
|
|
float const rad2deg = 360.f / 6.28318530718f; |
|
|
|
|
|
|
|
|
|
|
|
float C1 = length(lab1.yz); |
|
|
|
|
|
float C2 = length(lab2.yz); |
|
|
|
|
|
float C_ = 0.5f * (C1 + C2); |
|
|
|
|
|
|
|
|
|
|
|
float L1 = lab1.x; |
|
|
|
|
|
float L2 = lab2.x; |
|
|
|
|
|
float dLp = L2 - L1; |
|
|
|
|
|
float L_ = 0.5f * (L1 + L2); |
|
|
|
|
|
|
|
|
|
|
|
float tmp1 = pow(C_, 7.f); |
|
|
|
|
|
float tmp2 = 1.5f - 0.5f * sqrt(tmp1 / (tmp1 + pow(25.f, 7.f))); |
|
|
|
|
|
float ap1 = lab1.y * tmp2; |
|
|
|
|
|
float ap2 = lab2.y * tmp2; |
|
|
|
|
|
float Cp1 = sqrt(ap1 * ap1 + lab1.z * lab1.z); |
|
|
|
|
|
float Cp2 = sqrt(ap2 * ap2 + lab2.z * lab2.z); |
|
|
|
|
|
float dCp = Cp2 - Cp1; |
|
|
|
|
|
float Cp_ = 0.5f * (Cp1 + Cp2); |
|
|
|
|
|
|
|
|
|
|
|
float hp1 = fmod(atan2(lab1.z, ap1) * rad2deg, 360.f); |
|
|
|
|
|
if (hp1 < 0.f) |
|
|
|
|
|
hp1 += 360.f; |
|
|
|
|
|
float hp2 = fmod(atan2(lab2.z, ap2) * rad2deg, 360.f); |
|
|
|
|
|
if (hp2 < 0.f) |
|
|
|
|
|
hp2 += 360.f; |
|
|
|
|
|
float dhp; |
|
|
|
|
|
if (abs(hp1 - hp2) <= 180.f) |
|
|
|
|
|
dhp = hp2 - hp1; |
|
|
|
|
|
else if (hp2 <= hp1) |
|
|
|
|
|
dhp = hp2 - hp1 + 360.f; |
|
|
|
|
|
else |
|
|
|
|
|
dhp = hp2 - hp1 - 360.f; |
|
|
|
|
|
float dHp = 2.f * sqrt(Cp1 * Cp2) * sin(dhp / 2.f * deg2rad); |
|
|
|
|
|
float Hp_; |
|
|
|
|
|
if (abs(hp1 - hp2) > 180.f) |
|
|
|
|
|
Hp_ = 0.5f * (hp1 + hp2 + 360.f); |
|
|
|
|
|
else |
|
|
|
|
|
Hp_ = 0.5f * (hp1 + hp2); |
|
|
|
|
|
|
|
|
|
|
|
float T = 1.f - 0.17f * cos((Hp_ - 30.f) * deg2rad) |
|
|
|
|
|
+ 0.24f * cos(2 * Hp_ * deg2rad) |
|
|
|
|
|
+ 0.32f * cos((3.f * Hp_ + 6.f) * deg2rad) |
|
|
|
|
|
- 0.20f * cos((4.f * Hp_ - 63.f) * deg2rad); |
|
|
|
|
|
float SL = 1.f + 0.015f * (L_ - 50) * (L_ - 50) |
|
|
|
|
|
/ sqrt(20.f + (L_ - 50) * (L_ - 50)); |
|
|
|
|
|
float SC = 1.f + 0.045f * Cp_; |
|
|
|
|
|
float SH = 1.f + 0.015f * Cp_ * T; |
|
|
|
|
|
float RT = -2.f * sqrt(pow(Cp_, 7.f) / (pow(Cp_, 7.f) + pow(25.f, 7.f))) |
|
|
|
|
|
* sin(60.f * deg2rad * exp(-pow((Hp_ - 275.f) / 25.f, 2.f))); |
|
|
|
|
|
|
|
|
|
|
|
dLp /= SL; |
|
|
|
|
|
dCp /= SC; |
|
|
|
|
|
dHp /= SH; |
|
|
|
|
|
|
|
|
|
|
|
return sqrt(dLp * dLp + dCp * dCp + dHp * dHp + RT * dCp * dHp); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
static float DistanceCIEDE2000(vec3 lab1, vec3 lab2); |
|
|
|
|
|
|
|
|
/* Convert a wavelength to an xyY fully saturated colour */ |
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* Convert a wavelength into an xyY fully saturated colour. |
|
|
|
|
|
*/ |
|
|
static vec3 WavelengthToCIExyY(float nm); |
|
|
static vec3 WavelengthToCIExyY(float nm); |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|