| @@ -151,6 +151,8 @@ struct polynomial | |||||
| } | } | ||||
| else if (degree() == 3) | else if (degree() == 3) | ||||
| { | { | ||||
| static T const pi = acos(T(-1)); | |||||
| /* p(x) = ax³ + bx² + cx + d */ | /* p(x) = ax³ + bx² + cx + d */ | ||||
| T const &a = m_coefficients[3]; | T const &a = m_coefficients[3]; | ||||
| T const &b = m_coefficients[2]; | T const &b = m_coefficients[2]; | ||||
| @@ -176,31 +178,31 @@ struct polynomial | |||||
| * u³ = (-n/a + √((n/a)² + 4m³/27))/2 | * u³ = (-n/a + √((n/a)² + 4m³/27))/2 | ||||
| * v³ = (-n/a - √((n/a)² + 4m³/27))/2 | * v³ = (-n/a - √((n/a)² + 4m³/27))/2 | ||||
| */ | */ | ||||
| T const delta = (n * n) / (a * a) + 4.f * m * m * m / 27.f; | |||||
| T const delta = (n * n) / (a * a) + T(4) * m * m * m / T(27); | |||||
| /* Because 3×u×v = -m and m is not complex | /* Because 3×u×v = -m and m is not complex | ||||
| * angle(u³) + angle(v³) must equal 0. | * angle(u³) + angle(v³) must equal 0. | ||||
| * | * | ||||
| * This is why we compute u³ and v³ by norm and angle separately instead of | |||||
| * using a std::complex class | |||||
| * This is why we compute u³ and v³ by norm and angle separately | |||||
| * instead of using a std::complex class | |||||
| */ | */ | ||||
| T u3_norm, u3_angle; | T u3_norm, u3_angle; | ||||
| T v3_norm, v3_angle; | T v3_norm, v3_angle; | ||||
| if (delta < 0) | if (delta < 0) | ||||
| { | { | ||||
| v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / 2.f; | |||||
| v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / T(2); | |||||
| u3_angle = atan2(sqrt(abs(delta)), -n/a); | u3_angle = atan2(sqrt(abs(delta)), -n/a); | ||||
| v3_angle = -u3_angle; | v3_angle = -u3_angle; | ||||
| } | } | ||||
| else | else | ||||
| { | { | ||||
| u3_norm = (-n/a + sqrt(delta)) / 2.f; | |||||
| v3_norm = (-n/a - sqrt(delta)) / 2.f; | |||||
| u3_norm = (-n/a + sqrt(delta)) / T(2); | |||||
| v3_norm = (-n/a - sqrt(delta)) / T(2); | |||||
| u3_angle = u3_norm >= 0 ? 0 : M_PI; | |||||
| v3_angle = v3_norm >= 0 ? 0 : -M_PI; | |||||
| u3_angle = u3_norm >= 0 ? 0 : pi; | |||||
| v3_angle = v3_norm >= 0 ? 0 : -pi; | |||||
| u3_norm = abs(u3_norm); | u3_norm = abs(u3_norm); | ||||
| v3_norm = abs(v3_norm); | v3_norm = abs(v3_norm); | ||||
| @@ -210,22 +212,28 @@ struct polynomial | |||||
| for (int i = 0 ; i < 3 ; ++i) | for (int i = 0 ; i < 3 ; ++i) | ||||
| { | { | ||||
| T u_angle = u3_angle / 3.f + i * 2.f * M_PI / 3.f; | |||||
| T v_angle = v3_angle / 3.f - i * 2.f * M_PI / 3.f; | |||||
| T u_angle = (u3_angle + i * T(2) * pi) / T(3); | |||||
| T v_angle = (v3_angle - i * T(2) * pi) / T(3); | |||||
| solutions[i] = | solutions[i] = | ||||
| pow(u3_norm, 1.f / 3.f) * cos(u_angle) + | |||||
| pow(v3_norm, 1.f / 3.f) * cos(v_angle); | |||||
| pow(u3_norm, T(1) / T(3)) * cos(u_angle) + | |||||
| pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||||
| } | } | ||||
| if (delta < 0) // 3 real solutions | if (delta < 0) // 3 real solutions | ||||
| return array<T> {solutions[0] - k, solutions[1] - k, solutions[2] - k}; | |||||
| else if (delta > 0) // 1 real solution | |||||
| return array<T> {solutions[0] - k}; | |||||
| else if (u3_norm > 0) // 2 real solutions | |||||
| return array<T> {solutions[0] - k, solutions[1] - k}; | |||||
| else // one triple solution | |||||
| return array<T> {solutions[0] - k}; | |||||
| return array<T> { solutions[0] - k, | |||||
| solutions[1] - k, | |||||
| solutions[2] - k }; | |||||
| if (delta > 0) // 1 real solution | |||||
| return array<T> { solutions[0] - k }; | |||||
| if (u3_norm > 0) // 2 real solutions | |||||
| return array<T> { solutions[0] - k, | |||||
| solutions[1] - k }; | |||||
| // one triple solution | |||||
| return array<T> { solutions[0] - k }; | |||||
| } | } | ||||
| /* It is an error to reach this point. */ | /* It is an error to reach this point. */ | ||||