|
|
@@ -1228,29 +1228,23 @@ template<typename T> real_t<T> erfc(real_t<T> const &x) |
|
|
|
|
|
|
|
template<typename T> real_t<T> sinh(real_t<T> const &x) |
|
|
|
{ |
|
|
|
/* We cannot always use (exp(x)-exp(-x))/2 because we'll lose |
|
|
|
* accuracy near zero. We only use this identity for |x|>0.5. If |
|
|
|
* |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */ |
|
|
|
bool near_zero = (fabs(x) < real_t<T>::R_1() / 2); |
|
|
|
auto x1 = near_zero ? fast_exp_sub(x, real_t<T>::R_1()) : exp(x); |
|
|
|
auto x2 = near_zero ? fast_exp_sub(-x, real_t<T>::R_1()) : exp(-x); |
|
|
|
return (x1 - x2) / 2; |
|
|
|
// Use expm1() to ensure high accuracy around 0. No need to worry about |
|
|
|
// accuracy in other ranges because either exp(x) or exp(-x) will be |
|
|
|
// very large and cancel the other term. |
|
|
|
return (expm1(x) - expm1(-x)) / 2; |
|
|
|
} |
|
|
|
|
|
|
|
template<typename T> real_t<T> tanh(real_t<T> const &x) |
|
|
|
{ |
|
|
|
/* See sinh() for the strategy here */ |
|
|
|
bool near_zero = (fabs(x) < real_t<T>::R_1() / 2); |
|
|
|
auto x1 = near_zero ? fast_exp_sub(x, real_t<T>::R_1()) : exp(x); |
|
|
|
auto x2 = near_zero ? fast_exp_sub(-x, real_t<T>::R_1()) : exp(-x); |
|
|
|
auto x3 = near_zero ? x1 + x2 + real_t<T>::R_2() : x1 + x2; |
|
|
|
return (x1 - x2) / x3; |
|
|
|
// See sinh() for the strategy here. |
|
|
|
auto x1 = expm1(x), x2 = expm1(-x); |
|
|
|
return (x1 - x2) / (x1 + x2 + real_t<T>::R_2()); |
|
|
|
} |
|
|
|
|
|
|
|
template<typename T> real_t<T> cosh(real_t<T> const &x) |
|
|
|
{ |
|
|
|
/* No need to worry about accuracy here; maybe the last bit is slightly |
|
|
|
* off, but that's about it. */ |
|
|
|
// No need to worry about accuracy here; maybe the last bit is slightly |
|
|
|
// off, but that's about it. |
|
|
|
return (exp(x) + exp(-x)) / 2; |
|
|
|
} |
|
|
|
|
|
|
|