|
|
@@ -79,6 +79,95 @@ Array2D<float> Image::HalftoneKernel(ivec2 size) |
|
|
|
return NormalizeKernel(ret); |
|
|
|
} |
|
|
|
|
|
|
|
Array2D<float> Image::BlueNoiseKernel(ivec2 size) |
|
|
|
{ |
|
|
|
/* FIXME: this function could be faster if we didn't do the convolution |
|
|
|
* each time and instead work on the convoluted matrix. */ |
|
|
|
Array2D<float> ret(size); |
|
|
|
float const epsilon = 1.f / (size.x * size.y + 1); |
|
|
|
|
|
|
|
/* Create a small Gaussian kernel for filtering */ |
|
|
|
ivec2 const gsize = ivec2(9, 9); |
|
|
|
Array2D<float> gaussian(gsize); |
|
|
|
for (int j = 0; j < gsize.y; ++j) |
|
|
|
for (int i = 0; i < gsize.x; ++i) |
|
|
|
{ |
|
|
|
ivec2 const distance = gsize / 2 - ivec2(i, j); |
|
|
|
gaussian[i][j] = lol::exp(-lol::sqlength(distance) |
|
|
|
/ (0.05f * gsize.x * gsize.y)); |
|
|
|
} |
|
|
|
|
|
|
|
/* Helper function to find voids and clusters */ |
|
|
|
auto best = [&] (Array2D<float> const &p, float val, float mul) -> ivec2 |
|
|
|
{ |
|
|
|
float maxval = -size.x * size.y; |
|
|
|
ivec2 coord(0, 0); |
|
|
|
for (int y = 0; y < size.y; ++y) |
|
|
|
for (int x = 0; x < size.x; ++x) |
|
|
|
{ |
|
|
|
if (p[x][y] != val) |
|
|
|
continue; |
|
|
|
|
|
|
|
float total = 0.0f; |
|
|
|
for (int j = 0; j < gsize.y; ++j) |
|
|
|
for (int i = 0; i < gsize.x; ++i) |
|
|
|
total += gaussian[i][j] * |
|
|
|
p[(x + i - gsize.x / 2 + size.x) % size.x] |
|
|
|
[(y + j - gsize.y / 2 + size.y) % size.y]; |
|
|
|
if (total * mul > maxval) |
|
|
|
{ |
|
|
|
maxval = total * mul; |
|
|
|
coord = ivec2(x, y); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return coord; |
|
|
|
}; |
|
|
|
|
|
|
|
/* Generate an array with about 10% random dots */ |
|
|
|
Array2D<float> dots(size); |
|
|
|
int const ndots = (size.x * size.y + 9) / 10; |
|
|
|
memset(dots.Data(), 0, dots.Bytes()); |
|
|
|
for (int n = 0; n < ndots; ) |
|
|
|
{ |
|
|
|
int x = lol::rand(size.x); |
|
|
|
int y = lol::rand(size.y); |
|
|
|
if (dots[x][y]) |
|
|
|
continue; |
|
|
|
dots[x][y] = 1.0f; |
|
|
|
++n; |
|
|
|
} |
|
|
|
|
|
|
|
/* Rearrange 1s so that they occupy the largest voids */ |
|
|
|
for (;;) |
|
|
|
{ |
|
|
|
ivec2 bestcluster = best(dots, 1.0f, 1.0f); |
|
|
|
dots[bestcluster] = 0.0f; |
|
|
|
ivec2 bestvoid = best(dots, 0.0f, -1.0f); |
|
|
|
dots[bestvoid] = 1.0f; |
|
|
|
if (bestcluster == bestvoid) |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
/* Reorder all 1s and replace them with 0.0001 */ |
|
|
|
for (int n = ndots; n--; ) |
|
|
|
{ |
|
|
|
ivec2 bestcluster = best(dots, 1.0f, 1.0f); |
|
|
|
ret[bestcluster] = (n + 1.0f) * epsilon; |
|
|
|
dots[bestcluster] = 0.0001f; |
|
|
|
} |
|
|
|
|
|
|
|
/* Reorder all 0s and replace them with 0.0001 */ |
|
|
|
for (int n = ndots; n < size.x * size.y; ++n) |
|
|
|
{ |
|
|
|
ivec2 bestvoid = best(dots, 0.0f, -1.0f); |
|
|
|
ret[bestvoid] = (n + 1.0f) * epsilon; |
|
|
|
dots[bestvoid] = 0.0001f; |
|
|
|
} |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
struct Dot |
|
|
|
{ |
|
|
|
int x, y; |
|
|
@@ -108,7 +197,7 @@ Array2D<float> Image::NormalizeKernel(Array2D<float> const &kernel) |
|
|
|
|
|
|
|
Array2D<float> dst(size); |
|
|
|
|
|
|
|
float epsilon = 1.f / (size.x * size.y + 1); |
|
|
|
float const epsilon = 1.f / (size.x * size.y + 1); |
|
|
|
for (int n = 0; n < size.x * size.y; n++) |
|
|
|
{ |
|
|
|
int x = tmp[n].x; |
|
|
|