// // Lol Engine - Fractal tutorial // // Copyright: (c) 2011-2012 Sam Hocevar // This program is free software; you can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To // Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/projects/COPYING.WTFPL for more details. // #if defined HAVE_CONFIG_H # include "config.h" #endif #include #include #include "core.h" #include "loldebug.h" #if defined _WIN32 # include #endif using namespace lol; extern char const *lolfx_11_fractal; class Fractal : public WorldEntity { public: Fractal(ivec2 const &size) { /* Ensure texture size is a multiple of 16 for better aligned * data access. Store the dimensions of a texel for our shader, * as well as the half-size of the screen. */ m_size = size; m_size.x = (m_size.x + 15) & ~15; m_size.y = (m_size.y + 15) & ~15; m_texel_settings = vec4(1.0, 1.0, 2.0, 2.0) / m_size.xyxy; m_screen_settings = vec4(1.0, 1.0, 0.5, 0.5) * m_size.xyxy; /* Window size decides the world aspect ratio. For instance, 640×480 * will be mapped to (-0.66,-0.5) - (0.66,0.5). */ #if !defined __native_client__ m_window_size = Video::GetSize(); #else /* FIXME: it's illegal to call this on the game thread! */ m_window_size = ivec2(640, 480); #endif if (m_window_size.y < m_window_size.x) m_window2world = 0.5 / m_window_size.y; else m_window2world = 0.5 / m_window_size.x; m_texel2world = (vec2)m_window_size / m_size * m_window2world; m_oldmouse = ivec2(0, 0); m_pixels.Resize(m_size.x * m_size.y); m_frame = -1; m_slices = 4; for (int i = 0; i < 4; i++) { m_deltashift[i] = real("0"); m_deltascale[i] = real("1"); m_dirty[i] = 2; } #if defined __CELLOS_LV2__ || defined _XBOX //m_center = rcmplx(-.22815528839841, -1.11514249704382); //m_center = rcmplx(0.001643721971153, 0.822467633298876); m_center = rcmplx("-0.65823419062254", "0.50221777363480"); m_zoom_speed = -0.025; #else m_center = rcmplx(-0.75, 0.0); m_zoom_speed = 0.0; #endif m_translate = rcmplx(0.0, 0.0); m_radius = 5.0; m_ready = false; m_drag = false; for (int i = 0; i < (MAX_ITERATIONS + 1) * PALETTE_STEP; i++) { double f = (double)i / PALETTE_STEP; double r = 0.5 * lol::sin(f * 0.27 + 2.0) + 0.5; double g = 0.5 * lol::sin(f * 0.17 - 1.8) + 0.5; double b = 0.5 * lol::sin(f * 0.21 - 2.6) + 0.5; if (f < 7.0) { f = f < 1.0 ? 0.0 : (f - 1.0) / 6.0; r *= f; g *= f; b *= f; } uint8_t red = r * 255.99f; uint8_t green = g * 255.99f; uint8_t blue = b * 255.99f; #if defined __CELLOS_LV2__ || defined _XBOX m_palette.Push(u8vec4(255, red, green, blue)); #elif defined __native_client__ m_palette.Push(u8vec4(red, green, blue, 255)); #else m_palette.Push(u8vec4(blue, green, red, 255)); #endif } #if !defined __native_client__ m_centertext = new Text(NULL, "src/data/font/ascii.png"); m_centertext->SetPos(ivec3(5, m_window_size.y - 15, 1)); Ticker::Ref(m_centertext); m_mousetext = new Text(NULL, "src/data/font/ascii.png"); m_mousetext->SetPos(ivec3(5, m_window_size.y - 29, 1)); Ticker::Ref(m_mousetext); m_zoomtext = new Text(NULL, "src/data/font/ascii.png"); m_zoomtext->SetPos(ivec3(5, m_window_size.y - 43, 1)); Ticker::Ref(m_zoomtext); #endif m_position = ivec3(0, 0, 0); m_bbox[0] = m_position; m_bbox[1] = ivec3(m_window_size, 0); Input::TrackMouse(this); /* Spawn worker threads and wait for their readiness. */ for (int i = 0; i < MAX_THREADS; i++) m_threads[i] = new Thread(DoWorkHelper, this); for (int i = 0; i < MAX_THREADS; i++) m_spawnqueue.Pop(); } ~Fractal() { /* Signal worker threads for completion and wait for * them to quit. */ for (int i = 0; i < MAX_THREADS; i++) m_jobqueue.Push(-1); for (int i = 0; i < MAX_THREADS; i++) m_donequeue.Pop(); Input::UntrackMouse(this); #if !defined __native_client__ Ticker::Unref(m_centertext); Ticker::Unref(m_mousetext); Ticker::Unref(m_zoomtext); #endif } inline dcmplx TexelToWorldOffset(vec2 texel) { double dx = (0.5 + texel.x - m_size.x / 2) * m_texel2world.x; double dy = (0.5 + m_size.y / 2 - texel.y) * m_texel2world.y; return m_radius * dcmplx(dx, dy); } inline dcmplx ScreenToWorldOffset(vec2 pixel) { /* No 0.5 offset here, because we want to be able to position the * mouse at (0,0) exactly. */ double dx = pixel.x - m_window_size.x / 2; double dy = m_window_size.y / 2 - pixel.y; return m_radius * m_window2world * dcmplx(dx, dy); } virtual void TickGame(float seconds) { WorldEntity::TickGame(seconds); int prev_frame = (m_frame + 4) % 4; m_frame = (m_frame + 1) % 4; rcmplx worldmouse = m_center + rcmplx(ScreenToWorldOffset(m_mousepos)); ivec3 buttons = Input::GetMouseButtons(); #if !defined __CELLOS_LV2__ && !defined _XBOX if (buttons[1]) { if (!m_drag) { m_oldmouse = m_mousepos; m_drag = true; } m_translate = ScreenToWorldOffset(m_oldmouse) - ScreenToWorldOffset(m_mousepos); /* XXX: the purpose of this hack is to avoid translating by * an exact number of pixels. If this were to happen, the step() * optimisation for i915 cards in our shader would behave * incorrectly because a quarter of the pixels in the image * would have tie rankings in the distance calculation. */ m_translate *= real(1023.0 / 1024.0); m_oldmouse = m_mousepos; } else { m_drag = false; if (m_translate != rcmplx(0.0, 0.0)) { m_translate *= real(std::pow(2.0, -seconds * 5.0)); if ((double)m_translate.norm() < m_radius * 1e-4) m_translate = rcmplx(0.0, 0.0); } } if ((buttons[0] || buttons[2]) && m_mousepos.x != -1) { double zoom = buttons[0] ? -0.5 : 0.5; m_zoom_speed += zoom * seconds; if (m_zoom_speed / zoom > 5e-3f) m_zoom_speed = zoom * 5e-3f; } else if (m_zoom_speed) { m_zoom_speed *= std::pow(2.0, -seconds * 5.0); if (lol::abs(m_zoom_speed) < 1e-5 || m_drag) m_zoom_speed = 0.0; } #endif if (m_zoom_speed || m_translate != rcmplx(0.0, 0.0)) { rcmplx oldcenter = m_center; double oldradius = m_radius; double zoom = std::pow(2.0, seconds * 1e3f * m_zoom_speed); if (m_radius * zoom > 8.0) { m_zoom_speed *= -1.0; zoom = 8.0 / m_radius; } else if (m_radius * zoom < 1e-14) { m_zoom_speed *= -1.0; zoom = 1e-14 / m_radius; } m_radius *= zoom; #if !defined __CELLOS_LV2__ && !defined _XBOX m_center += m_translate; m_center = (m_center - worldmouse) * real(zoom) + worldmouse; worldmouse = m_center + rcmplx(ScreenToWorldOffset(m_mousepos)); #endif /* Store the transformation properties to go from m_frame - 1 * to m_frame. */ m_deltashift[prev_frame] = (m_center - oldcenter) / real(oldradius); m_deltashift[prev_frame].x /= m_size.x * m_texel2world.x; m_deltashift[prev_frame].y /= m_size.y * m_texel2world.y; m_deltascale[prev_frame] = m_radius / oldradius; m_dirty[0] = m_dirty[1] = m_dirty[2] = m_dirty[3] = 2; } else { /* If settings didn't change, set transformation from previous * frame to identity. */ m_deltashift[prev_frame] = real::R_0(); m_deltascale[prev_frame] = real::R_1(); } /* Transformation from current frame to current frame is always * identity. */ m_zoom_settings[m_frame][0] = 0.0f; m_zoom_settings[m_frame][1] = 0.0f; m_zoom_settings[m_frame][2] = 1.0f; /* Compute transformation from other frames to current frame */ for (int i = 0; i < 3; i++) { int prev_index = (m_frame + 4 - i) % 4; int cur_index = (m_frame + 3 - i) % 4; m_zoom_settings[cur_index][0] = (real)m_zoom_settings[prev_index][0] * m_deltascale[cur_index] + m_deltashift[cur_index].x; m_zoom_settings[cur_index][1] = (real)m_zoom_settings[prev_index][1] * m_deltascale[cur_index] + m_deltashift[cur_index].y; m_zoom_settings[cur_index][2] = (real)m_zoom_settings[prev_index][2] * m_deltascale[cur_index]; } /* Precompute texture offset change instead of doing it in GLSL */ for (int i = 0; i < 4; i++) { m_zoom_settings[i][0] += 0.5 * (1.0 - m_zoom_settings[i][2]); m_zoom_settings[i][1] -= 0.5 * (1.0 - m_zoom_settings[i][2]); } #if !defined __native_client__ char buf[256]; std::sprintf(buf, "center: "); m_center.x.sprintf(buf + strlen(buf), 30); std::sprintf(buf + strlen(buf), " "); m_center.y.sprintf(buf + strlen(buf), 30); m_centertext->SetText(buf); std::sprintf(buf, " mouse: "); worldmouse.x.sprintf(buf + strlen(buf), 30); std::sprintf(buf + strlen(buf), " "); worldmouse.y.sprintf(buf + strlen(buf), 30); m_mousetext->SetText(buf); std::sprintf(buf, " zoom: %g", 1.0 / m_radius); m_zoomtext->SetText(buf); #endif if (m_dirty[m_frame]) { m_dirty[m_frame]--; for (int i = 0; i < m_size.y; i += MAX_LINES * 2) m_jobqueue.Push(i); } } static void *DoWorkHelper(void *data) { Fractal *that = (Fractal *)data; that->m_spawnqueue.Push(0); for ( ; ; ) { int line = that->m_jobqueue.Pop(); if (line == -1) break; that->DoWork(line); that->m_donequeue.Push(0); } that->m_donequeue.Push(0); return NULL; }; void DoWork(int line) { double const maxsqlen = 1024; double const k1 = 1.0 / (1 << 10) / (std::log(maxsqlen) / std::log(2.0)); int jmin = ((m_frame + 1) % 4) / 2 + line; int jmax = jmin + MAX_LINES * 2; if (jmax > m_size.y) jmax = m_size.y; u8vec4 *m_pixelstart = &m_pixels[0] + m_size.x * (m_size.y / 4 * m_frame + line / 4); dcmplx c = (dcmplx)m_center; for (int j = jmin; j < jmax; j += 2) for (int i = m_frame % 2; i < m_size.x; i += 2) { double xr, yr, x0, y0, x1, y1, x2, y2, x3, y3; dcmplx z0 = c + TexelToWorldOffset(ivec2(i, j)); //dcmplx r0(0.28693186889504513, 0.014286693904085048); //dcmplx r0(0.001643721971153, 0.822467633298876); //dcmplx r0(-1.207205434596, 0.315432814901); //dcmplx r0(-0.79192956889854, -0.14632423080102); //dcmplx r0(0.3245046418497685, 0.04855101129280834); dcmplx r0 = z0; x0 = z0.x; y0 = z0.y; xr = r0.x; yr = r0.y; int iter = MAX_ITERATIONS - 4; for (;;) { /* Unroll the loop: tests are more expensive to do at each * iteration than the few extra multiplications. */ x1 = x0 * x0 - y0 * y0 + xr; y1 = x0 * y0 + x0 * y0 + yr; x2 = x1 * x1 - y1 * y1 + xr; y2 = x1 * y1 + x1 * y1 + yr; x3 = x2 * x2 - y2 * y2 + xr; y3 = x2 * y2 + x2 * y2 + yr; x0 = x3 * x3 - y3 * y3 + xr; y0 = x3 * y3 + x3 * y3 + yr; if (x0 * x0 + y0 * y0 >= maxsqlen) break; iter -= 4; if (iter < 4) break; } if (iter) { double n = x0 * x0 + y0 * y0; if (x1 * x1 + y1 * y1 >= maxsqlen) { iter += 3; n = x1 * x1 + y1 * y1; } else if (x2 * x2 + y2 * y2 >= maxsqlen) { iter += 2; n = x2 * x2 + y2 * y2; } else if (x3 * x3 + y3 * y3 >= maxsqlen) { iter += 1; n = x3 * x3 + y3 * y3; } if (n > maxsqlen * maxsqlen) n = maxsqlen * maxsqlen; /* Approximate log(sqrt(n))/log(sqrt(maxsqlen)) */ double f = iter; union { double n; uint64_t x; } u = { n }; double k = (u.x >> 42) - (((1 << 10) - 1) << 10); k *= k1; /* Approximate log2(k) in [1,2]. */ f += (- 0.344847817623168308695977510213252644185 * k + 2.024664188044341212602376988171727038739) * k - 1.674876738008591047163498125918330313237; *m_pixelstart++ = m_palette[(int)(f * PALETTE_STEP)]; } else { #if defined __CELLOS_LV2__ || defined _XBOX *m_pixelstart++ = u8vec4(255, 0, 0, 0); #else *m_pixelstart++ = u8vec4(0, 0, 0, 255); #endif } } } virtual void TickDraw(float seconds) { WorldEntity::TickDraw(seconds); static float const vertices[] = { 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, }; static float const texcoords[] = { 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, }; if (!m_ready) { /* Create a texture of half the width and twice the height * so that we can upload four different subimages each frame. */ m_texture = new Texture(ivec2(m_size.x / 2, m_size.y * 2), PixelFormat::A8B8G8R8); /* Ensure the texture data is complete at least once, otherwise * uploading subimages will not work. */ m_texture->SetData(&m_pixels[0]); m_shader = Shader::Create(lolfx_11_fractal); m_vertexattrib = m_shader->GetAttribLocation("a_Vertex", VertexUsage::Position, 0); m_texattrib = m_shader->GetAttribLocation("a_TexCoord", VertexUsage::TexCoord, 0); m_texeluni = m_shader->GetUniformLocation("u_TexelSize"); m_screenuni = m_shader->GetUniformLocation("u_ScreenSize"); m_zoomuni = m_shader->GetUniformLocation("u_ZoomSettings"); m_vdecl = new VertexDeclaration(VertexStream(VertexUsage::Position), VertexStream(VertexUsage::TexCoord)); m_vbo = new VertexBuffer(sizeof(vertices)); m_tbo = new VertexBuffer(sizeof(texcoords)); void *tmp = m_vbo->Lock(0, 0); memcpy(tmp, vertices, sizeof(vertices)); m_vbo->Unlock(); tmp = m_tbo->Lock(0, 0); memcpy(tmp, texcoords, sizeof(texcoords)); m_tbo->Unlock(); /* FIXME: this object never cleans up */ m_ready = true; } m_texture->Bind(); if (m_dirty[m_frame]) { for (int i = 0; i < m_size.y; i += MAX_LINES * 2) m_donequeue.Pop(); m_dirty[m_frame]--; #if defined __CELLOS_LV2__ /* glTexSubImage2D is extremely slow on the PS3, to the point * that uploading the whole texture is 40 times faster. */ m_texture->SetData(&m_pixels[0]); #else m_texture->SetSubData(ivec2(0, m_frame * m_size.y / 2), m_size / 2, &m_pixels[m_size.x * m_size.y / 4 * m_frame]); #endif } m_shader->Bind(); m_shader->SetUniform(m_texeluni, m_texel_settings); m_shader->SetUniform(m_screenuni, m_screen_settings); m_shader->SetUniform(m_zoomuni, m_zoom_settings); m_vdecl->Bind(); m_vdecl->SetStream(m_vbo, m_vertexattrib); m_vdecl->SetStream(m_tbo, m_texattrib); m_texture->Bind(); m_vdecl->DrawElements(MeshPrimitive::Triangles, 0, 6); m_vdecl->Unbind(); } private: static int const MAX_ITERATIONS = 340; static int const PALETTE_STEP = 32; static int const MAX_THREADS = 8; static int const MAX_LINES = 8; ivec2 m_size, m_window_size, m_oldmouse; double m_window2world; dvec2 m_texel2world; Array m_pixels, m_palette; Shader *m_shader; ShaderAttrib m_vertexattrib, m_texattrib; ShaderUniform m_texeluni, m_screenuni, m_zoomuni; VertexDeclaration *m_vdecl; VertexBuffer *m_vbo, *m_tbo; Texture *m_texture; int m_frame, m_slices, m_dirty[4]; bool m_ready, m_drag; rcmplx m_deltashift[4], m_center, m_translate; real m_deltascale[4]; double m_zoom_speed, m_radius; vec4 m_texel_settings, m_screen_settings; mat4 m_zoom_settings; /* Worker threads */ Thread *m_threads[MAX_THREADS]; Queue m_spawnqueue, m_jobqueue, m_donequeue; /* Debug information */ #if !defined __native_client__ Text *m_centertext, *m_mousetext, *m_zoomtext; #endif }; int main(int argc, char **argv) { ivec2 window_size(640, 480); Application app("Tutorial 3: Fractal", window_size, 60.0f); #if defined _MSC_VER && !defined _XBOX _chdir(".."); #elif defined _WIN32 && !defined _XBOX _chdir("../.."); #endif new DebugFps(5, 5); new Fractal(window_size); //new DebugRecord("fractalol.ogm", 60.0f); app.Run(); return EXIT_SUCCESS; }